S,

.%ﬁ > UNIVERSITY
87 OF TRENTO

The Nonce-nce of Web Security

An Investigation of CSP Nonces Reuse

Matteo Golinelli, Francesco Bonomi, and Bruno Crispo

University of Trento, Italy

matteo.golinelli@unitn.it, francesco.bonomi@hotmail.it,
bruno.crispo@unitn.it



Background: Content Security Policy

Web security mechanism that prevents the exploitation of XSS vulnerabilities

Can be specified

e IntheContent-Security-Policy response header
e [na<meta>HTMLtag

Enables websites to whitelist sources for JavaScript code, images, CSS files, ...



Background: CSP & Inline Scripts

By default, CSP blocks all inline scripts

e Hashes allow scripts which hash is included in the policy
> Content-Security-Policy: script-src 'sha256-<HASH>'
e Nonces allow scripts with a nonce attribute matching the one specified

> Content-Security-Policy: script-src 'nonce-cmFuZG9t'

ipt nonce="cmFuzZGot"

console.log("This will execute");

console.log("This will *not* execute");




Background: CSP Nonces

nonce = a number used only once

According to the specification, CSP nonces should be

e Unique for each HTTP response
e Generated using a cryptographically secure random number generator

e Atleast 128 bitlong



The Issue: Reusing the same nonce is bad

The Content Security Policy prevents the exploitation of XSS vulnerabilities

e But mistakes and oversights in its implementation might render it ineffective
while giving website operators a false sense of security



Goal: Detect & Measure Nonces Misuse

Large-scale analysis on the Tranco Top 50k to detect

e Nonces reuse: used in more than one HTTP response
e Short nonces: shorter than 128 bit

e Invalid nonces: presenting invalid characters outside of the base64 encoding



Methodology

URLs Collection CSp Norolces CSp Non'ces
- Detection Evaluation
Sites with
ITranco Websites crawling > Detection of ) élr\lligsésrgﬁse ) nr:f::::
Top 50k and CSP detection script tags with a

- Nonce length
- Nonce validity

nonce attribute




Methodology: Nonces Reuse

responsel <- HTTP.get(URL)
noncel <- responsel.nonce

if noncel is not

response2 <- HTTP.get(URL)
nonce2 <- response2.nonce

if nonce2 is not and nonce2 == noncel:
print("Nonce reused")

else:
print("Nonce not reused")




Analysis: Reuse Causes

We attribute nonces reuse to a web cache or to the server-side code by

1. Checking if all the responses include the same nonce value
2. Using Cache-Busting

3. Using the Cache Header Heuristics



Analysis: Cache Busting

Receive a fresh copy of the response, instead of a cached one

e Addarandom parameter to the query string

https://site.com/ D https://site.com/?ran=dom

= This works when a web cache includes the query string in the cache key

10



Analysis: Cache Header Heuristics

Check if the response is coming from the cache or from the origin

Lookup of the response headers to check for cache status headers

e Headers applied by web caches to communicate if a response is cached or not

= X-Cache: HIT whencached

= X-Cache: MISS when notcached

1



Analysis: Session Analysis

We check if a reused nonce is bound to a single session by

1. Issuing an HTTP request without providing the previously stored cookies to
simulate a new visitor

2. Checking if the nonce value is different

12



Results: CSP Adoption

More than one in four websites that use nonces, reuses them in some way

Total sites using CSP 10034

enforcement mode 8946 (89.2%)
report-only mode 1088 (10.8%)
)
)

Sites with CSP nonces 2271 (22.6%

Sites reusing CSP nonces (6.0%

13



Results: Nonces Misuse

Total sites reusing nonces 598

due to a cache 256 (42.8%)
server-side code 342 (57.2%)
)
)

in the same session 37 (6.2%

in different sessions (561) (93.8%

Due to a cache: an attacker can only exploit DOM XSS vulnerabilities
Same session: an attacker must steal a nonce to bypass the CSP

Different sessions: an attacker can easily obtain a nonce

14



Results: Length & Invalid Nonces

Total sites using nonces 2271
Sites with a short nonce (<22) 501 (22.1%)
Sites with invalid characters in the nonce 8 (0.4%)

e Short nonces can theoretically be brute-forced

e Invalid nonces are rejected by browsers, causing a self-DoS

15



Limitations & Future Work

We do not investigate the randomness of the nonces
e Analysis of the entropy

No analysis of the inline JavaScript included in the pages
e |[fthey use untrusted data, the CSP is useless

Tests performed only with a single IP address

e Find nonces bound to IP addresses (if any)

16



UNIVERSITY o
OF TRENTO Conclusions

Reusing the same nonce is

< in some cases, the same as allowing all inline scripts
< inothers, a severe relaxation of the policy

Implementing a proper nonce-based policy is a complex task

= butis the only way to be fully protected against XSS

matteo.golinelli@unitn.it


https://github.com/Golim/nonce-nce/

Extra

18



Extra: Distribution on the Tranco Top 50k

Distribution of websites that have a nonce-based CSP (in blue), and the subset of those
which reuse a CSP nonce (in red) with respect to their ranking in the Tranco Top 50k.

4001 307 B Using a nonce
B Reusing the same nonce
207 326
300 1
% 200 210 191
H* 176 L84 173
154 153
25.1% 206;, 59' 52 | 54 46 55 47 | .52
7 70128.1%] 57 09 29.9% |30 79

bk 10k 15k 20k 25k 30k 35k 40k 45k 50k
Tranco Rank



