
The Nonce-nce of Web Security
An Investigation of CSP Nonces Reuse

Matteo Golinelli, Francesco Bonomi, and Bruno Crispo

University of Trento, Italy
matteo.golinelli@unitn.it, francesco.bonomi@hotmail.it,

bruno.crispo@unitn.it

1

Background: Content Security Policy

Web security mechanism that prevents the exploitation of XSS vulnerabilities

Can be specified

● In the Content-Security-Policy response header

● In a <meta> HTML tag

Enables websites to whitelist sources for JavaScript code, images, CSS files, …

2

Background: CSP & Inline Scripts

By default, CSP blocks all inline scripts

● Hashes allow scripts which hash is included in the policy

↪ Content-Security-Policy: script-src 'sha256-<HASH>'

● Nonces allow scripts with a nonce attribute matching the one specified

↪ Content-Security-Policy: script-src 'nonce-cmFuZG9t'

3

Background: CSP Nonces

nonce = a number used only once

According to the specification, CSP nonces should be

● Unique for each HTTP response

● Generated using a cryptographically secure random number generator

● At least 128 bit long

4

The Issue: Reusing the same nonce is bad

The Content Security Policy prevents the exploitation of XSS vulnerabilities

● But mistakes and oversights in its implementation might render it ineffective

while giving website operators a false sense of security

5

Goal: Detect & Measure Nonces Misuse

Large-scale analysis on the Tranco Top 50k to detect

● Nonces reuse: used in more than one HTTP response

● Short nonces: shorter than 128 bit

● Invalid nonces: presenting invalid characters outside of the base64 encoding

6

Methodology

7

Methodology: Nonces Reuse

8

We attribute nonces reuse to a web cache or to the server-side code by

1. Checking if all the responses include the same nonce value

2. Using Cache-Busting

3. Using the Cache Header Heuristics

Analysis: Reuse Causes

9

Receive a fresh copy of the response, instead of a cached one

● Add a random parameter to the query string

https://site.com/ ⇨ https://site.com/?ran=dom

↪ This works when a web cache includes the query string in the cache key

Analysis: Cache Busting

10

Check if the response is coming from the cache or from the origin

Lookup of the response headers to check for cache status headers

● Headers applied by web caches to communicate if a response is cached or not

↪ X-Cache: HIT when cached

↪ X-Cache: MISS when not cached

Analysis: Cache Header Heuristics

11

We check if a reused nonce is bound to a single session by

1. Issuing an HTTP request without providing the previously stored cookies to

simulate a new visitor

2. Checking if the nonce value is different

Analysis: Session Analysis

12

Results: CSP Adoption

More than one in four websites that use nonces, reuses them in some way

13

● Due to a cache: an attacker can only exploit DOM XSS vulnerabilities

● Same session: an attacker must steal a nonce to bypass the CSP

● Different sessions: an attacker can easily obtain a nonce

Results: Nonces Misuse

14

● Short nonces can theoretically be brute-forced

● Invalid nonces are rejected by browsers, causing a self-DoS

Results: Length & Invalid Nonces

15

We do not investigate the randomness of the nonces

● Analysis of the entropy

No analysis of the inline JavaScript included in the pages

● If they use untrusted data, the CSP is useless

Tests performed only with a single IP address

● Find nonces bound to IP addresses (if any)

Limitations & Future Work

16

https://github.com/Golim/nonce-nce/ matteo.golinelli@unitn.it

Conclusions

Reusing the same nonce is

↪ in some cases, the same as allowing all inline scripts
↪ in others, a severe relaxation of the policy

Implementing a proper nonce-based policy is a complex task

↪ but is the only way to be fully protected against XSS

17

https://github.com/Golim/nonce-nce/

Extra

18

Extra: Distribution on the Tranco Top 50k

Distribution of websites that have a nonce-based CSP (in blue), and the subset of those

which reuse a CSP nonce (in red) with respect to their ranking in the Tranco Top 50k.

19

