
OAuth 2.0 Redirect URI Validation Falls Short, 
Literally

Tommaso Innocenti
Northeastern University

Boston, MA, USA

Ali Mirheidari
Independent Researcher

Austin, TX, USA

Matteo Golinelli
University of Trento

Trento, Italy

Bruno Crispo
University of Trento

Trento, Italy

Kaan Onarlioglu
Akamai Technologies and 
Northeastern University*

Cambridge, MA, USA

Engin Kirda
Northeastern University

Boston, MA, USA

Published in the “Proceedings of the 39th Annual Computer Security Applications Conference” (ACSAC ‘23)
1



OAuth 2.0

2



Background: OAuth 2.0

Secure delegated access framework

● Enables Resource Owners to grant a Client website access to their data hosted on 

a third-party Resource Server
● Authorization is granted via an Authorization Server, instead of sharing the 

Resource Owner credentials with the Client

Defines 4 grant types

● Authorization Code Grant is the most common

3



Web applications (Client) access the data of internet users (Resource Owner) by 

authenticating to an Identity Provider (IdP: generally a combination of Authorization 
Server and Resource Server)

● The Client must first establish a trust relationship with the IdP by registering 

their application
○ Set up a callback endpoint called redirect URI
○ Receive a client ID and client secret

Background: Authorization Code Grant

4



Background: Authorization Code Grant

Resource OwnerClient Identity Provider

Client Application Access

1

Redirect to IdP

2

Authorization Request

3

[client_id, redirect_uri]

User
Authentication

4

Redirect to Client’s callback

5

[code]

Authorization Response

6

[code]

A
ut

ho
riz

at
io

n 
Pr

oc
es

s

[client_id, redirect_uri]

5



Research Statement: RFC 6749 & RFC 3986

RFC 6749 Section 3.1.2.3 The authorization server MUST compare the two URIs using 
simple string comparison as defined in RFC 3986 Section 6.2.1.

RFC 3986 Section 6.2.1 Testing strings for equality is normally based on pair comparison 
of the characters that make up the strings, starting from the first and proceeding until both 
strings are exhausted, and all characters are found to be equal, until a pair of characters 
compares unequal, or until one of the strings is exhausted before the other.

What if two URIs have a matching prefix, but different lengths?
The string comparison is a failure or a success?

6



How to interpret the RFC?

Should IdPs interpret this ambiguity as an intentional flexibility?

● e.g., support dynamic path components or query parameters in redirect URI

This validation scheme prevents tampering with the host or domain name included 

in a redirect URI

● Falls short of detecting potentially malicious additions to the path and query 

string that follow

7



Background: Path Confusion

Attacks that abuse URI parsing discrepancies within complex system interactions

● Appending maliciously crafted path components to a URL

↪ Confuse modern URL parsers designed to accommodate complex URL rewriting and 

routing mechanisms

↪ Induce discrepancies between multiple parsers in a complex system (e.g., on an 

origin server and on a CDN cache)

https://client.com/callback%2Frandom%2F%2e%2e

8



Is OAuth 2.0 vulnerable to Path Confusion attacks?

Attack: replace the legitimate redirect URI parameter in OAuth 2.0 flows with path 

confusion payloads

● Determine which IdPs fail to detect this malicious modification through validation

Impact: the IdP redirects the victim’s user agent to an unintended endpoint on the 

Client site

9



Path Confusion Attack Consequences

The authorization code is delivered to a maliciously modified callback endpoint on 

the Client

● The code remains unused by the Client
○ If stolen, can be used to get access to the Resource Owner’s data

● An attacker can steal the code by redirecting to an arbitrary enpoint 
vulnerable to data exfiltration
○ XSS, open redirect, third-party code inclusion

○ Multi-tenant websites

10



On each website to test:

1. Identify the HTML elements that start an OAuth flow

2. Trigger an OAuth flow

3. Use a proxy to intercept the flows and inject our path confusion payloads into 

the redirect URI

4. Collect all the network traffic

5. Analyse the data collected and check if the redirection was hijacked

Methodology: Path Confusion vulnerabilities detection

11



Results: Path Confusion

We tested the websites in the Tranco Top 15k

● 728 websites supporting OAuth

● Selected the IdPs used by at least 3 Clients and that do not require personal 

information when registering an account: 22 IdPs in scope

6 IdPs tested did not correctly validate the redirect URI and were 

vulnerable to path confusion

Facebook, Microsoft, GitHub, Atlassian, NAVER, and VK
12



Mitigations

Redirect URI validation should use strict string equality check

IdPs should never sanitize the redirect URI to avoid introducing discrepancies, 

instead they should validate it

13



Responsible Disclosure

We contacted all the impacted Identity Providers

● Microsoft acknowledge our report and fixed their validation procedure
● GitHub is tracking the problem internally and is actively working on a fix
● Naver fixed the issue and rewarded us with a bug bounty
● The other acknowledged our reports but did not provide information on fixes

We reported our finding to the OAuth Working Group:

● They update to the OAuth 2.0 Security Best Current Practice, clarifying the 
requirement for an exact string match during redirect URI validation

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures

● The OpenID foundation modified the conformance test suite to include our 
attack

14

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures


Conclusions

The current "best practice" is not good enough, leaving IdPs, Clients, and Internet 

users exposed to attacks

● Path confusion

● OAuth Parameter Pollution (OPP): find details in the full paper

The vulnerabilities we discovered are not implementation bugs

● They are rooted in the OAuth 2.0 specification where language is not 

prescriptive enough

● IdPs that follow the RFCs still risk exposing redirect URI validation vulnerabilities

https://dl.acm.org/doi/pdf/10.1145/3627106.3627140 matteo.golinelli@unitn.it
15

https://dl.acm.org/doi/pdf/10.1145/3627106.3627140


Extra slides

16



Research Statement: RFC 6749

RFC 6749 Section 3.1 The endpoint URI MAY include an "application/x-www-form- 
urlencoded" formatted [...] query component [...], which MUST be retained when adding 
additional query parameters.

RFC 6749 Section 10.14 A code injection attack occurs when an input or otherwise 
external variable is used by an application unsanitized and causes modification to the 
application logic. This may allow an attacker to access the application device or its data, 
cause a denial of service, or introduce a wide range of malicious side-effects. The 
authorization server and Client MUST sanitize (and validate when possible) any value 
received–in particular, the value of the "state" and "redirect_uri" parameters.

17



Background: Parameter Pollution

18


