
Mind the CORS
Matteo Golinelli

University of Trento
Trento, Italy

matteo.golinelli@unitn.it

Elham Arshad
University of Trento

Trento, Italy
elham.arshad@unitn.it

Dmytro Kashchuk
University of Trento

Trento, Italy
dmytro.kashchuk@studenti.unitn.it

Bruno Crispo
University of Trento

Trento, Italy
bruno.crispo@unitn.it

Abstract—Cross-Origin Resource Sharing (CORS) is a mech-
anism to relax the security rules imposed by the Same-Origin
Policy (SOP), which can be too restrictive for websites that
rely on cross-site data exchange for their functioning. CORS
allows trusting origins different from the website domain despite
the presence of a strict SOP using a series of HTTP headers.
This mechanism is supported by all modern browsers and is
extensively adopted by websites. In CORS, servers are responsible
for validating the value of the Origin header and deciding
whether or not to trust it. For this reason, developers must be
thorough in coding this process not to introduce security issues.
We carried out a large-scale analysis on the Tranco Top 50k to
measure the prevalence of various implementation flaws due to
errors or simplifications in Origin validation and found that of the
6,862 websites using CORS, 2,014 (29.4%) have at least one flaw.
We next exploit the vulnerabilities introduced by these CORS
flaws in a realistic real-world scenario from the point of view of
two attacker models with varying capability levels, evaluating the
conditions necessary for a successful attack and its consequences.
We show how these flaws enable attackers to perform Denial of
Service and steal victims’ sensitive data and security tokens that
can then be used to mount subsequent attacks. We conclude that
CORS is an effective but complicated mechanism and its use
should be carefully evaluated by website operators not to risk
introducing severe security issues in their systems.

Index Terms—CORS, SOP, cross-site requests, cross-origin,
cache poisoning.

I. INTRODUCTION

The Same-Origin Policy (SOP) is a web security mechanism
that allows restricting access to resources on a site from origins
other than the site itself. The origin of a site is defined by the
three values of protocol, host and port. However, if a website
relies on interchanging data with third-party websites with
different origins, the SOP may be too restrictive and break
its functionality. For websites that wish to maintain cross-
site information exchange with certain third-party websites
without relinquishing the use of the SOP as a protection mech-
anism, the Cross-Origin Resource Sharing (CORS) mechanism
was introduced [1]. CORS is based on two HTTP headers
in response to cross-site requests: “Access-Control-Allow-
Origin” (ACAO), which allows indicating whether to trust
the origin included in the request, and “Access-Control-Allow-
Credentials” (ACAC), which allows the server to instruct on
whether authentication cookies and any authorization headers
may be attached to requests by the browser [2].

The enforcement of the rules established by CORS is
delegated to the client browser, while the server is responsible
for verifying the value of the origin of requests and the

subsequent decision on whether or not to trust it. For this
reason, the logic that verifies the value of the origin is crucial
for the security of the website. Since the origin verification
in CORS is programmed by the application developers, there
is a high possibility of introducing flaws that lead to trusting
websites that can potentially be controlled by malicious actors,
compromising the website’s security. The simplest case of
dangerous CORS configuration is when the value of the
request origin is simply copied into the ACAO header of
the response, effectively trusting every possible origin. Other
dangerous configurations may be introduced by errors in the
creation of regular expressions, by the use of prefixes or
suffixes in the checks, or by allowing the value null.

Previous research has focused on measuring the prevalence
of CORS flaws in the wild, without investigating the actual ex-
ploitability of such flaws in a realistic real-world scenario [3]–
[5].

The goal of this research is to answer the following ques-
tions.
(Q1) What are the required conditions for CORS flaws to be

exploitable in a real-world scenario by existing attacker
profiles in standard threat models?

(Q2) What are the consequences of the exploitation of such
vulnerabilities for the victims?

To answer these questions, we first conduct a large-scale
analysis of the homepages and login pages of the websites
in the Tranco Top 50k to measure the prevalence of several
variations of CORS implementation flaws. Since CORS is
not configured the same for all resources on a site but can
potentially vary for each URL, we decided to test two pages
from each site. Of 6,862 websites using CORS, we found
2,014 (29.4%) that have at least one CORS flaw. We then
partly automate and replicate the attacks enabled by such
flaws in a real-world scenario from the perspective of two
types of attacker models, distinguished by the different levels
of capabilities they possess: 1) web attacker: has the least
power (and therefore it is the most dangerous); can operate
a website with a generic domain for which they possess a
valid HTTPS certificate. 2) related-domain attacker: controls
a website hosted on a subdomain of the target website.

We discover that the consequences of the exploitation of
CORS flaws can enable attackers to steal personal and po-
tentially sensitive information of authenticated users, along
with stealing security tokens of both authenticated and non-
authenticated visitors, which can later be used to carry out sub-

sequent attacks, such as CSRF (Cross-Site Request Forgery)
and login CSRF. Moreover, we investigate the possibilities for
attackers to exploit CORS flaws to achieve Denial of Service.

To summarize, we make the following contributions:
• We conduct a large-scale analysis to measure the preva-

lence of CORS flaws in the Tranco Top 50k ranking. We
find that 29.4% of the websites that employ CORS have
at least one CORS flaw.

• We identify the conditions necessary for CORS flaws
to be exploitable by two attacker models with different
power levels against victims using modern up-to-date
browsers with default security settings. We find that the
default security settings of some browsers enable the
exploitability of CORS flaws.

• We develop a methodology to semi-automatically repli-
cate the attacks enabled by CORS flaws in a realistic
real-world scenario and analyze their consequences. We
show that exploiting the CORS flaws enables attackers
to steal victims’ personal and security information and
achieve DoS.

Availability. The source code of our tools is available on
the author’s website1.

II. BACKGROUND & RELATED WORKS

In this section, we present an overview of how Cross-Origin
Resource Sharing (CORS) works and discuss related concepts
such as Same-Origin Policy (SOP), cross-site requests, and
state-changing requests, and describe the risks involved in
cross-origin communications.

A. Access Control Policy in Web

The Same-Origin Policy (SOP) is a fundamental concept
in web application security, on which the main principle of
web security is based. The SOP sets access restrictions on
web resources (including sensitive information), isolating them
and providing boundaries from other websites with different
origins. This rule does not apply to websites with the same
origin: two websites are considered from the same origin if
and only if all the following three values are exactly the same:
protocol, host, and port [1].

As the way SOP builds a protective wall for websites, it
became too restrictive for a large portion of websites that
need to communicate beyond the boundary of their current
origin, for example, their subdomains. Due to the complexity
of the web environment, more websites are relying on other
websites for exchanging data to provide better functionality to
users. To address this problem, in 2006, the W3C introduced
a mechanism, called Cross-Origin Resource Sharing (CORS),
to relax the SOP allowing cross-origin requests and sharing of
resources between websites with different origins [3]. CORS,
an extension of the XMLHttpRequest API, functions through
a set of HTTP headers enforced by the client to provide the
permissions to access the selected resources in cross-origin
requests. The server performs the validation, authorization,

1https://github.com/Golim/mind-the-cors

and access restrictions, while it is the browser’s responsibility
to support these HTTP headers to enforce the restrictions.
This protocol has been adopted by all major browsers (e.g.,
Chrome, Firefox, IE), and has been widely adopted by web-
sites.

We take websites A and B as an example to describe
CORS in a real scenario. Website A requests a resource from
website B and the SOP will not grant this access unless
website B is CORS configured and responds with an “Access-
Control-Allow-Origin” (ACAO) header, indicating website A
as a trusted party to access that resource. To check whether
the server is configured to use CORS, the browser sends
a preflight request, i.e., an OPTIONS HTTP request that
includes the three headers “Access-Control-Request-Method”,
to discover which methods are supported, “Access-Control-
Request-Headers”, and “Origin” [6]. ACAO header supports
a single origin within a CORS response and if a website
wants to allow any origin, the header sets to * wildcard. An
additional header called “Access-Control-Allow-Credentials”
(ACAC) is available which, if set to true, allows credentialed
requests (i.e., with authentication cookies and authorization
headers attached). Importantly from a security point of view,
credentialed requests with a * wildcard are forbidden [7].

B. Cookies

Cookies are a mechanism to introduce the concept of “state”
into the HTTP protocol, which would otherwise be stateless.
Web servers use cookies to maintain the visitors’ sessions;
therefore, their confidentiality and integrity are crucial to
keeping the session secure. Compromising the confidentiality
or integrity of a user’s session can enable the stealing of
sensitive data, hijacking the account, and replacing the session
(e.g., login CSRF [8]). Web servers use the HTTP Set-Cookie
header to save cookies on the visitor’s user agent, characterised
by a name, value and possible attributes; the browser will
automatically attach the cookies to subsequent requests [9].

1) SameSite: Cross-site attacks are successful when the
browser includes valid cookies in the requests performed from
the malicious site; therefore, an effective solution to cross-
site attacks is to set restrictions on the cookies’ scope. The
SameSite attribute in the Set-Cookie HTTP response header
introduces three policies, None, Lax, and Strict, that instruct
the browsers on which requests to attach cookies [10].

None This policy specifies that cookies are sent in all out-
going requests, including first-party and cross-site ones. This
policy corresponds to the default policy before the introduction
of the SameSite attribute. When setting SameSite=None, the
Secure cookie attribute must also be set, otherwise, cookies
will be blocked. The Secure attribute specifies that a cookie
must only be attached to HTTPS requests.

Lax The Lax policy tries to increase the usability of the
website while maintaining its security. Lax cookies are sent
for requests issued by top-level navigation (e.g., clicking
on a link), but not for sub-requests (e.g., requests to load
media files). This is the default value for cookies when the
SameSite attribute is not specified in the Set-Cookie header on

Chromium-based browsers (including Chrome, Edge, Opera,
and Brave), while Firefox and Safari default the attribute to
None 2. Note that some Firefox tracking protections may
isolate third-party cookies for cross-site requests, preventing
cookies from being sent even if they do not specify the
SameSite attribute [11].

Strict This value is more stringent than other values for
attaching cookies to outgoing requests. It prevents the browser
from sending the cookies in all cross-site browsing contexts,
even those with safe methods, and only allows requests from
the same website to include cookies.

C. Cross-Site Attacks

A large part of web security is involved in the study of
cross-site (XS) attacks, in which a victim visits a malicious
site that makes authenticated cross-site HTTP requests from
the victim’s browser to a vulnerable website. In fact, depending
on the SameSite attribute of cookies, explained in detail in
section II-B, the browser automatically attaches cookies to the
requests to the sites from which they were created. Cross-
site attacks allow to steal victims’ personal information, take
control of their accounts or perform actions on their behalf
on vulnerable web applications. The SameSite attribute, if set
correctly, prevents this kind of attacks [10].

D. Cache poisoning

A web cache is a component of the web architecture that
stores copies of web resources such as HTML pages, images,
and other media files. When a user requests a resource, the web
cache first checks if it has a valid copy. If the cache contains a
copy of the requested resource, it returns it to the user instead
of requesting it from the origin server, reducing the load on
the origin server and improving the performance. In addition
to storing the response body, the cache generally saves the
response headers. The cache key is a unique identifier used to
store and retrieve cached resources. The cache key is typically
based on the URL of the requested resource, but it may also
include other factors, such as the query string parameters and
cookies. If the cache key does not include the value of the
Origin header in the request, an attacker can perform a Denial
of Service (DoS) attack exploiting CORS flaws by sending
a request with a malformed Origin header that is mistakenly
trusted by the web cache. The cache then stores the response,
including the ACAO header with the malformed Origin value,
and returns it to subsequent visitors that request the same
resource. When the browser receives the response, it compares
the Origin header of the request with the ACAO header of the
response, and since the two values do not match, the browser
blocks it, resulting in a DoS.

E. Related Works

CORS is a relatively new security mechanism, and several
academic and non-academic researchers have identified vari-
ous security problems. Some studies have highlighted common
flaws of CORS ([4], [5], [12]). Kettle [12] provides a summary

2We tested all browsers using https://samesitetest.com/.

of several CORS flaws identified throughout his penetration
testing experiences. Müller [4] takes the different CORS flaws
and measures their prevalence on the Alexa top 1M websites,
while Evan J performs a measurement of the arbitrary ori-
gin reflection in [5], showing a high number of vulnerable
websites in the Alexa top 1M. Chen et al. [3] provide an
empirical study for CORS security, finding some new issues
in the design and implementation of CORS: they craft the
size and value of the requests headers and body, leading to
Remote Code Execution (RCE), file upload CSRF and attacks
on binary protocol services, and endangering the privacy of
the user. They also analyze the risky relationship between
websites through CORS including third-party and subdomain
websites. In addition, they measure the CORS flaws of 50k
websites and the frameworks they use [3]. Meiser et al.
in [7] construct a graph of interconnected trust relationships
between websites considering existing cross-communication
methods, namely postMessage, CORS and domain relaxation.
They focus specifically on the dangers that the interconnected
network of trust could cause and investigate the attack surface.
They estimate the damage of XSS exploitation that usually
occurs when websites trust each other on the interconnected
web.

Previous work on the same topic focused only on identifying
CORS flaws, while in this work we investigate what the
attackers can do by exploiting CORS flaws. We study and
replicate the possible attacks to steal personal information and
cause Denial of Service.

III. THREAT MODEL

Due to the complexity of the web, security professionals
must consider all angles and choose suitable attacker models
to cover possible web attacks. Therefore, as a fundamental
assumption of this research, we take two types of attackers
from the web security literature: the web attacker and the
related-domain attacker. Our threat model, unlike previous
research on CORS flaws, does not depend on the presence
of XSS vulnerabilities on other websites and does not assess
the security of third-party websites that could affect the target
website. We describe the types of attackers with respect to our
attacks based on CORS implementation flaws.

Web Attacker. The most well-known attacker model in the
web security literature is the web attacker, which is of great
concern to security professionals. A web attacker operates
at least one website that responds to any HTTP(S) requests
with malicious content and mounts attacks through standard
HTML and JavaScript code. This attacker has no privileged
access or control over the network. A web attacker could
be anyone who registers a domain and, possibly, obtains an
HTTPS certificate [13]. Web browsers are designed to protect
users even when they visit a malicious website. Therefore, we
assume that the web browser correctly implements the web
standards and has default settings according to its version.

Related-domain Attacker. This attacker is a more powerful
web attacker that controls a malicious website hosted on a
sibling domain of the target website. A sibling domain is

a domain that shares a suffix long enough with one of the
target websites that is not present in a public database of
suffixes, such as facebook.com or bbc.co.uk. For example, if
we take “example.com” as the target website, we assume that a
related domain attacker has control over “evil.example.com”.
This attacker is more powerful compared to a simple web
attacker because cookies are generally shared between a
domain and its siblings [13]. Attacks on related domains
might seem uncommon in the real world, as it is assumed
that the owner of “example.com” would never allow control
over “evil.example.com” to untrusted parties. However, recent
research has shown that the takeover of subdomains is a
serious and widespread security risk [14].

IV. CORS FLAWS

Frequently, web developers generate dynamic CORS poli-
cies deployed in web applications that dynamically validate
the value of the request’s “Origin” header. If these policies
are not implemented correctly on the server side, the web
application might unintentionally trust domains that it is not
intended to trust and hinder the SOP enforcement. Due to the
complexity of this validation and the pitfalls in CORS design,
different types of flaws can arise in CORS implementations.
Following we list the types of CORS flaws that we considered
in our research. The flaws are compiled based on previous
research and supplemented with new flaws we found through
our experiments [3].

Arbitrary origin reflection: The basic way to configure
CORS while dynamically generating the policies is to blindly
reflect the “Origin” header value of the request in the “Access-
Control-Allow-Origin” header in the responses. This configu-
ration trusts any domain that performs the request.

Prefix matching: the server ignores the ending characters
and trusts any domain prefixed with a trusted domain. For
instance, a server wants to trust “victim.com” and allows
“victim.com.attacker.com”.

Suffix matching: the server only checks if the ending
characters match the trusted domain, or their own domain,
as a way to allow all the subdomains. For example, if a server
wants to allow “victim.com”, it mistakenly trusts any domains
that end with “victim.com” as well, e.g., “attackervictim.com”.

Not escaping ‘.’: when the validation is performed using
a regular expression, the developer might forget to escape
“.” characters in the configuration. For instance, “victim.com”
wants to allow “www.victim.com”, but allows “wwwAvic-
tim.com” as well.

“null” value: the “Origin” header was first proposed as
a mitigation against CSRF attack, and CORS reuses this
header [15]. One of the essential conditions for CORS security
is that the “Origin” header value cannot be forged in a cross-
origin request, but this is not always true in reality. RFC 6454
states that a request from a privacy-sensitive context should
set the “Origin” header to “null”, even though it does not
provide an explicit definition for privacy-sensitive context [15].
Moreover, CORS standards do not define the “null” value
clearly. In reality, browsers send the ’null’ value from multiple

sources, like iframe sandbox scripts. To share data with these
types of sources, a developer must allow the null value
in their configuration, setting “Access-Control-Allow-Origin:
null” and “Access-Control-Allow-Credentials: true”. By doing
so, an attacker can easily forge the “Origin” header by sending
a cross-origin request from an iframe sandbox in the browser.
Consequently, websites with this flaw can be read by any other
websites.

HTTPS site trusts HTTP domain: some CORS config-
urations do not take the protocol (scheme) into account and
cause HTTPS sites to trust HTTP ones.

Arbitrary subdomains: most applications decide to allow
access from all their subdomains (even non-existent ones).
Additionally, websites might allow access from various third-
party websites, including all their subdomains.

End matching: this differs from suffix matching in
that the website is not only checking for the trusted do-
main but also for the scheme. Consequently, a website
that wants to trust “https://victim.com” mistakenly trusts
“https://attacker.com/https://victim.com”. This flaw cannot be
exploited by a web attacker because the browser will never
generate such a value for the Origin header; however, this
variation can be exploited to achieve DoS by manually crafting
an HTTP request with a malformed Origin.

V. METHODOLOGY

We present our measurement methodology in three phases:
1) Collection, 2) Detection, and 3) Exploitation, as shown in
Fig. 1.

A. Collection

The first phase aims at finding the web pages to test. Our
goal is to identify two URLs for each site: the landing page
and the login page. In fact, different paths might have different
CORS configurations. We chose the homepage and the login
page to have data on both a resource that can be visited
with authentication (by logging into the sites) and one that
should only be accessible by unauthenticated visitors. This
also allowed us to assess the impact of CORS flaws against
unauthenticated victims.

We developed a tool that uses Python and a Selenium
web browser to identify the websites using CORS. Our tool
checks both the home pages and the login pages. Specifically,
we visited the domains using both the HTTPS and HTTP
protocols in both forms of the URL, with or without “www.”
prepended. To identify the login pages, the tool uses a specially
designed heuristic that relies on keyword matching both on the
URL and the HTML code of the web page.

Next, we test all collected web pages to check whether they
use CORS or not. For each web page to test, we try to force
the use of CORS by including the “Origin” header with a
genuine value in an HTTP request and checking the presence
of the ACAO header in the response. If the ACAO header is
present, the web page is using CORS and can be tested for
possible flaws.

Fig. 1. High-level visualization of our methodology in three phases: collection of candidate pages to test, detection of CORS flaws, and flaws exploitation.

B. Detection

In this phase, we test all extracted web pages from the
previous phase for the CORS flaws listed in Section IV. We
developed a tool called CORS Flaws Scanner that sends one
HTTP request for each flaw to each web page, where the value
of the Origin header is mutated accordingly to the variation.
If the mutated Origin value is reflected in the response ACAO
header, the web page is misconfigured to the tested variation.
All the HTTP requests to test for CORS flaws are performed
using the python requests library, providing the User-Agent of
a legitimate Chrome web browser to simulate a genuine user
visiting the web page using a browser.

C. Exploitation

As discussed in Section IV, flaws in the validation of the
Origin header value for CORS might lead to the emergence of
security vulnerabilities. In this section, we describe different
cross-site attacks that we replicated against websites with
CORS flaws from the perspective of the two attacker models
described in Section III, against victims using modern up-to-
date browsers (i.e., Firefox, Chromium-based browsers, and
Safari).

Web Attacker To carry out the attack, the web attacker
simply creates a website with a domain name that is trusted
by the CORS (mis)configuration of the target website and
generates an HTML page containing JavaScript code that
performs a cross-site request to the target website. As we will
discuss in more detail later, websites that are vulnerable to
all the variations we test, excluding “HTTPS site trusts HTTP
domain”, “arbitrary subdomains” and “end matching”, allow
a web attacker to register a domain that will be mistakenly
trusted by the target website.

We partly automated the exploitation of these vulnerabilities
by creating a tool that works as follows:

1) The tool binds the attacker’s domain name (mistak-
enly trusted by the target site) to localhost using the
/etc/resolv.conf file, a configuration file used by the
DNS resolver of several operating systems, simulating
an attacker with controlling the domain. In a real-world

scenario, an attacker would register the domain using a
registrar.

2) The tool generates an exploit HTML containing the
JavaScript code presented in Listing 1. This code per-
forms an XHR (XMLHttpRequest) request to the flawed
web page on the target website instructing the browser to
include credentials (i.e., cookies, authorization headers)
and stores the response content. The code prints the
response content in the console (line 5 in Listing 1),
while in an attack scenario, the data would be exfiltrated
to an attacker’s controlled server and saved in a database.

3) The exploit HTML code is served by a web server
running in localhost that can be accessed using the
previously bound domain name and, if necessary, pro-
viding an encrypted connection with HTTPS using
TLS certificates specifically created and installed in the
browser (in a real-world attack scenario, an attacker
could generate a certificate using free services such as
Let’s Encrypt [16]).

4) Finally, the automation uses a puppeteer-controlled
browser to open the login page of the target website,
where the tester manually logs into the test victim
account, and then is redirected to the exploit web page
using the previously bound domain. Due to CORS flaws,
the response to the XHR request, which contains the
sensitive data of the logged-in victim, will be exposed
to the attacker. In a real-world scenario, the victim would
already be authenticated on the target website and the
response content would be exfiltrated to the attacker.

Listing 1. A sample of an automatically generated JavaScript code that
performs the cross-site request

1 <script>
2 var url = 'URL_PLACEHOLDER';
3 var req = new XMLHttpRequest();
4 req.addEventListener('load', () =>
5 console.log(req.responseText));
6 req.open('get', url, true);
7 req.withCredentials = true;
8 req.send();
9 </script>

The only task that must be performed manually by the
tester is logging into the website since automating this action
is extremely complicated due to every site implementing it
differently.

To exploit the null value flaw we use a modified JavaScript
code that creates an exploit web page where the same script
presented in Listing 1 is included in an iframe. In fact, the
Origin header of HTTP requests performed from inside an
iframe is set to the value “null”.

This attack is mitigated by websites by correctly setting the
SameSite attribute of authentication cookies, therefore, for the
attack to work against a flawed target, the following conditions
must be met:

1) An attacker must be able to register a domain name
mistakenly trusted by the CORS configuration of the
target website on a registrar.

2) The CORS configuration of the target website must
allow credentialed requests (i.e., “ACAC: true”).

3) The website must not set the SameSite attribute of
authentication cookies, or it must be set to the None
value.

Moreover, the victim must use a web browser that does not
implement the Lax-by-default policy for the SameSite attribute
when not otherwise specified (e.g., Firefox, Safari).

To test this attack on each potentially exploitable website
(i.e., the websites that meet the aforementioned conditions),
it is necessary to simulate an authenticated victim, which
is why it is required to conduct the registration and login
procedure on each website to be tested to create a dummy
account populated with bogus information. Since the number
of websites to be tested is high and this procedure is time-
consuming, we decided to test only those websites that allow
registration and login using Google and Facebook OAuth. To
identify the websites that support OAuth with at least one
of these two IdPs (Identity Providers), we developed a tool
that, given the URL of the login page (previously identified
in the Collection phase described in Section V-A), identifies
any OAuth button present in the page. Specifically, this tool is
based on a Selenium browser and Python’s BeautifulSoup [17]
library to crawl through all HTML tags of type a, input
and button and checks whether they contain some specific
keywords (e.g., “Log in with”, “Continue with”). The tool
also checks whether any URL in the HTML code of the web
page is an OAuth URL of the two providers, using a regex
system.

Related-domain Attacker This attacker can perform the
same attack, but instead of controlling any arbitrary domain,
the malicious actor must have control of a sub-domain of the
target website. To simulate the exploitation of these vulnera-
bilities, we used the same automation as for the web attacker,
mimicking an attacker with the control of a sub-domain by
using the /etc/resolv.conf file.

D. Unauthenticated Victim

Motivated by the findings of Mirheidari et al., who in [18]
show how even web pages publicly accessible to unauthorized

TABLE I
EXPERIMENT STATISTICS: NUMBER OF SITES AND PAGES THAT WE

VISITED THAT USE CORS AND ARE VULNERABLE TO AT LEAST ONE
CORS FLAW. PERCENTAGES FOR EACH ROW ARE CALCULATED OVER THE

NUMBER OF VISITED SITES OR PAGES IN THE Visited COLUMN.

Visited Use CORS Vulnerable

Websites 39,067 6,862 (17.6%) 2,014 (5.2%)

Total web pages 58,815 7,681 (13.1%) 2,350 (4.0%)
Homepages 39,064 5,328 (13.6%) 1,536 (3.9%)

Login pages 19,751 2,353 (11.9%) 814 (4.1%)

visitors can contain valuable secrets for an attacker to bypass
security mechanisms or mount subsequent attacks, we stat-
ically analyzed the content of all vulnerable login pages to
detect the presence of common types of sensitive information.
To detect the sensitive information, we used regular expres-
sions on the dynamic parts of login pages, i.e., those parts
of HTML code that change when the web page is requested
multiple times using different browsers. The dynamic parts
of login pages can be for instance CSRF tokens, OAuth state
parameters and CSP nonce. As shown in [8], stealing the state
parameter allows attackers to mount login CSRF attacks.

E. Cache Poisoning
Finally, we tested the possibility of exploiting CORS flaws

to cause Denial of Service. As explained in Section II, for
this attack to be possible, the website must present at least
one CORS flaw and the cache must not include the value of
the Origin header in the cache key. To check for sites that
present these characteristics and are therefore vulnerable to
DoS we tested all sites that present CORS flaws with a specific
heuristic algorithm. We first send a request with a malformed
Origin that is mistakenly trusted by the website (i.e., its value
is reflected in the ACAO response header). Next, we send a
second request, this time with a genuine Origin of the website,
and check whether the value of the response matches the
genuine Origin or the malformed one. If the ACAO value of
the second response includes the modified Origin value, the
website is vulnerable to cache poisoning and prone to DoS.
To avoid poisoning actual resources that could be accessed by
genuine users of the tested websites, we used specific cache-
busting techniques, such as adding random query parameters.
This also allows us to avoid the accessed resources from being
already cached when we send the first request.

VI. EXPERIMENT

In this section, we present the results of the empirical
analysis and discuss them in detail. We conducted a large-scale
experiment and performed different attacks using CORS flaws
in the wild through modern browsers with default settings from
the perspective of the two types of attacker models.

A. Results
We conducted our experiment over the websites included

in the Tranco Top 50k [19] generated on 04 April 2023 3.

3Available at https://tranco-list.eu/list/W9J39.

Fig. 2. Distribution of websites using CORS and misconfigured to at least
one variation with respect to their Tranco ranking in 5k bins.

As described in Section V-A, we first crawled each web-
site to identify its homepage and login pages. In total, we
identified 39,064 homepages and 19,751 login pages on a
total of 39,067 websites. For 10,933 websites, we could not
identify the homepage or login page due to various problems.
Primarily, we encountered errors such as request time-outs,
hosts not resolvable by the DNS, and unreachable destinations.
Additionally, some domains lacked an actual homepage (e.g.,
domains that serve static resources and answer HTTP requests
only for specific paths). In total, we successfully tested 58,815
pages, 7,681 of which (on 6,862 different websites) responded
with CORS headers.

Using our CORS Flaws Scanner tool, we tested all the
collected web pages to detect possible CORS flaws. As shown
in Table I, we found that 2,014 sites are misconfigured to
at least one variation of the ones listed in Section IV, for a
total of 2,350 web pages. Table II shows the number of sites
misconfigured to specific variations. Note that in this table,
we only count the more generic variation and not the most
specific ones. For example, if a website is misconfigured to
“arbitrary origin reflection”, we only count it for that, even
though all the other variations would test positive.

Fig. 2 illustrates the distribution of websites using CORS
that are misconfigured to at least one variation in relation to
their Tranco ranking. The chart suggests that the adoption of
CORS is slightly related to the popularity of the website, while
the number of websites with CORS flaws is only related to
the number of websites using CORS.

B. Exploitation

In this section, we describe the attacks replicated in a real-
world scenario, carried out from the point of view of the two
types of attackers described in Section III.

Due to the large number of impacted websites, it was not
possible for us to perform the attacks on all websites. For
this reason, we replicated the attacks on only a subset of the
sites affected by CORS flaws. It is important to note that,

as we will explain in the section on the web attacker, for
this attacker the exploitation of CORS flaws is not always
successful and requires additional conditions to be verified for
each target website. For this reason, we tested a statistically
relevant number of sites and present in Table IV the percentage
of sites where we were able to carry out the attack successfully.

By contrast, the exploits carried out by the related-domain
attacker do not require any additional conditions for the attack
to be successful.

Web Attacker This attack is performed by the web attacker
who controls a website for which they possess an HTTPS
certificate and on which they host malicious code; the attacker
uses social engineering techniques to induce the unsuspecting
victim to visit the malicious website. As described in Sec-
tion V-C, three conditions are required for this attack to be
possible. The variations that meet the first condition are lines
3 to 7 in Table II. Moreover, if the target issues cookies without
setting the SameSite attribute, the victim must use a browser
that does not implement the Lax-by-default policy. Table III
shows the number of pages and websites with CORS flaws
that meet the conditions, with a total of 157 websites.

However, it is not enough for these conditions to be met
for an attacker to be able to mount a successful attack.
In fact, these conditions are measured when the visitor is
not authenticated, while the attack is carried out against an
authenticated victim. For this reason, we selected 30 websites
that implement Facebook or Google OAuth to log in, registered
a dummy account as the victim, and performed the attack
as described in Section V-C. We successfully performed the
attacks on 21 websites, while for the other 9 websites, the
attack failed for different reasons (e.g., requests blocked by
the WAF, enforcing different CORS policies when the visitor
is authenticated). We were able to steal the victim’s sensitive
data on several websites, categorized in the “Authenticated”
column in Table IV.

Related-domain Attacker This attacker model can exploit
the “Arbitrary subdomain” variation (line 2 in Table II). For
this attack to be successful, no further conditions are necessary,
and all 848 websites are vulnerable to cross-site attacks. We
successfully replicated this attack on a selection of sites by
simulating an attacker in control of a subdomain using our
methodology described in Section V-C.

C. Unauthenticated Victim

The column Unauthenticated in Table IV presents the
number of security tokens detected in the source code of
vulnerable login pages, accessed by a non-authenticated visitor
using a clean browser. By stealing CSRF tokens or the OAuth
state assigned to a victim, an attacker is able to perform login
CSRF attacks, forcing the user into logging into an attacker’s
account on the targeted website.

D. Cache Poisoning

As described in Section II, if the Origin header is not
included in the cache key of web caches, the website might be
susceptible to Denial of Service. Using the methodology that

TABLE II
NUMBER OF PAGES AND SITES MISCONFIGURED TO THE TESTED VARIATIONS. PERCENTAGES ARE CALCULATED OVER THE TOTAL NUMBER OF FLAWED

PAGES OR SITES, PRESENTED IN THE LAST ROW OF THE TABLE FOR EACH COLUMN.

ID Variation Homepages Login pages Sites

1 HTTPS trusts HTTP 1391 (90.6%) 682 (83.8%) 1786 (88.7%)
2 Arbitrary subdomain 606 (39.5%) 396 (48.6%) 848 (42.1%)
3 Arbitrary origin reflection 484 (31.5%) 248 (30.5%) 655 (32.5%)
4 “null” value 476 (31.0%) 240 (29.5%) 640 (31.8%)
5 Prefix matching 110 (7.2%) 65 (8.0%) 159 (7.9%)
6 Non escaped dot 123 (8.0%) 45 (5.5%) 146 (7.2%)
7 Suffix matching 85 (5.5%) 24 (2.9%) 91 (4.5%)
8 End matching 307 (20.0%) 177 (21.7%) 422 (21.0%)

Total 1536 814 2014

TABLE III
NUMBER OF PAGES AND SITES THAT MEET THE CONDITIONS REQUIRED FOR THE ATTACK TO BE SUCCESSFUL FOR THE WEB ATTACKER LISTED IN
SECTION V-C. EACH ROW IS A SUBSET OF THE PRECEDING ROW. THE VARIATIONS REFERENCED IN THE FIRST CONDITIONS ARE PRESENTED IN

TABLE II.

Homepages Login pages Sites

Total misconfigured 1536 814 2014
1) Misconfigured to variations 3 to 7 718 (46.7%) 379 (46.6%) 959 (47.6%)
2) Allow credentials 345 (22.5%) 258 (31.7%) 524 (26.0%)
3) No SameSite attribute 77 (5.0%) 117 (14.4%) 157 (7.8%)

All conditions 73 (4.8%) 112 (13.8%) 157 (7.8%)

TABLE IV
NUMBER OF VULNERABLE HOMEPAGES AND LOGIN PAGES THAT LEAK

SENSITIVE INFORMATION OF AUTHENTICATED AND UNAUTHENTICATED
VICTIMS RESPECTIVELY. NOTE THAT personal information CANNOT BE

FOUND ON UNAUTHENTICATED PAGES.

Authenticated Unauthenticated
Total tested (30 homepages) (814 login pages)

Personal Information 15 (50.0%) —
CSRF Token 5 (16.7%) 163 (20.0%)
CSP Nonce 0 (0.0%) 63 (7.7%)
OAuth State 1 (3.3%) 22 (2.7%)

we developed and described in Section V-C, we identified 45
sites that are vulnerable to this attack. An attacker can abuse
any variation that we tested for because it is enough for the
injected value to differ from the Origin value of genuine HTTP
requests.

VII. DISCUSSION & CONCLUSION

We answer our first research question (Q1), showing how
theoretical flaws introduced by CORS flaws can be exploited
in practice to break the security of websites. We analysed the
conditions necessary for two different attacker models with
varying levels of capabilities to exploit the security issues
introduced by CORS flaws and the consequences of these
attacks, mainly related to the confidentiality of victims’ data.
Moreover, we analysed how stealing security tokens assigned
to victims may allow attackers to mount subsequent attacks
against them, also impacting the integrity and availability.
The web attacker, with the lowest level of prior capabilities
required, can only exploit the flaws when three conditions are

met and against victims using browsers without the Lax-by-
default policy, but the severity of the resulting attacks is greater
than that of the others. This attack is only made possible
by the fact that some modern browsers, such as Firefox and
Safari, with an estimated combined usage of 16% [20], do
not implement the Lax-by-default policy proposed by Google
precisely to mitigate this type of flaw [21]. Firefox initially
supported and then discontinued this policy from version 69
on, in favour of backwards compatibility [22]; however, as our
research shows, it also sacrificed part of its users’ security.
Firefox users can enable the Lax-by-default policy from the
settings to protect themselves against web attackers; however,
this still does not protect against the other two attackers, for
which no simple solution is available. Moreover, the Lax-by-
default policy will most likely be adopted by all browsers in
the near future: Firefox has already started to do so in some
nightly and beta versions [23], [24], while for Safari it is not
yet clear [25].

Related-domain attackers can exploit one type of flaw,
provided they control at least one subdomain of the target
website, with severe consequences for the confidentiality of
victims’ data on the main domain.

We also answer (Q2) by showing that the exploitation
of these vulnerabilities leads to stealing victims’ sensitive
data. Moreover, we analysed the consequences of such an
attack against unauthenticated victims, stealing the security
tokens assigned to them on vulnerable login pages. Finally,
we investigate how CORS flaws can lead to Denial of Service,
finding that 45 sites in our dataset fail to include the Origin
value in the cache key and are therefore affected.

29.4% of the websites using CORS had at least one flaw.

Of these sites, in particular, the vast majority of websites
trust the HTTP version of their domain; nearly half allow
arbitrary subdomains and one in three trusts the value null
or reflects the value of the request origin in the response.
These results suggest that developers are either unaware of the
potential security consequences of these dangerous behaviours
or underestimate them. We believe that devolving the burden of
validating the Origin programmatically on the server, instead
of introducing a policy-based system enforced directly by the
browser, has introduced an inherent complexity to the CORS
mechanism, which is thus prone to human error with severe
consequences for web security.

Ethical considerations During the execution of the attacks
that we reproduced and described, we always used specifically
created test accounts as victims. No users of any website were
impacted by our attacks. We employed cache-busting tech-
niques to avoid poisoning resources potentially accessed by
genuine users of the target websites. During all experiments,
we minimised the impact on targeted websites by limiting
the number of requests performed to the minimum possible;
moreover, we performed no disruptive attacks. Although we
have never disclosed the domains of sites impacted by these
vulnerabilities to any third party and in this article, we will
proceed with the responsible disclosure to all websites that
provide security contact in the coming weeks.

ACKNOWLEDGEMENTS

This work has been partially supported by the EU Hori-
zon project DUCA (GA 101086308) and CrossCon (GA
101070537). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of
the European Union or CINEA. Neither the European Union
nor the granting authority can be held responsible for them.

REFERENCES

[1] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin policy:
Evaluation in modern browsers,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 713–727. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/schwenk

[2] J. Wilander, “CORS-safelisted request headers should be restricted
according to RFC 7231 · Issue #382 · whatwg/fetch.” [Online].
Available: https://github.com/whatwg/fetch/issues/382

[3] J. Chen, J. Jiang, H. Duan, T. Wan, S. Chen, V. Paxson, and M. Yang,
“We still Don’t have secure Cross-Domain requests: an empirical
study of CORS,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018,
pp. 1079–1093. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/chen-jianjun

[4] J. Müller, “On Web-Security and -Insecurity: CORS misconfigurations
on a large scale,” Jul. 2017. [Online]. Available: https://web-in-security.
blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html

[5] E. J, “Misconfigured cors,” 2016. [Online]. Available: https://ejj.io/
misconfigured-cors

[6] WHATWG, “Fetch Standard.” [Online]. Available: https://fetch.spec.
whatwg.org/

[7] G. Meiser, P. Laperdrix, and B. Stock, “Careful Who You Trust:
Studying the Pitfalls of Cross-Origin Communication,” in ASIACCS
2021 - 16th ACM Asia Conference on Computer and Communications
Security, ser. 16th ACM Asia Conference on Computer and
Communications Security, Hong Kong / Virtual, China, Jun. 2021.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03021256

[8] E. Arshad, M. Benolli, and B. Crispo, “Practical attacks on login csrf
in oauth,” Computers & Security, vol. 121, p. 102859, 2022.

[9] A. Barth, “HTTP State Management Mechanism,” RFC 6265, Apr.
2011. [Online]. Available: https://www.rfc-editor.org/info/rfc6265

[10] S. Khodayari and G. Pellegrino, “The state of the samesite: Studying
the usage, effectiveness, and adequacy of samesite cookies,” in 43rd
IEEE Symposium on Security and Privacy (S&P ’22), 2022. [Online].
Available: https://publications.cispa.saarland/3504/

[11] “Enhanced tracking protection in firefox for desk-
top.” [Online]. Available: https://support.mozilla.org/en-US/kb/
enhanced-tracking-protection-firefox-desktop

[12] J. Kettle, “Exploiting cors misconfigurations for bitcoins and
bounties,” 2016. [Online]. Available: https://portswigger.net/research/
exploiting-cors-misconfigurations-for-bitcoins-and-bounties

[13] A. Bortz, A. Barth, and A. Czeskis, “Origin cookies: Session integrity
for web applications,” ACM Transactions on Internet Technology (TOIT),
vol. 2, 05 2012.

[14] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara, and
M. Maffei, “Can i take your subdomain? exploring Same-Site
attacks in the modern web,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
2917–2934. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/squarcina

[15] A. Barth, “The Web Origin Concept,” RFC 6454, Dec. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6454

[16] “Let’s Encrypt.” [Online]. Available: https://letsencrypt.org/
[17] “Beautiful Soup Documentation — Beautiful Soup 4.9.0 docu-

mentation.” [Online]. Available: https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

[18] S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and
B. Crispo, “Web Cache Deception Escalates!” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/mirheidari

[19] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” in Proceedings 2019 Network and
Distributed System Security Symposium. Internet Society, 2019.
[Online]. Available: https://doi.org/10.14722/ndss.2019.23386

[20] “Global Desktop Browser Market Share for 2022.” [Online]. Available:
https://kinsta.com/browser-market-share/

[21] M. West, “Incrementally Better Cookies,” Internet Engineering Task
Force, Internet-Draft draft-west-cookie-incrementalism-01, Mar. 2020,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-west-cookie-incrementalism/01/

[22] “SameSite cookies - HTTP | MDN.” [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Set-Cookie/SameSite

[23] “Changes to SameSite Cookie Behavior – A Call to Action for Web De-
velopers – Mozilla Hacks - the Web developer blog.” [Online]. Available:
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior

[24] “[meta] Enable sameSite=lax by default.” [Online]. Available: https:
//bugzilla.mozilla.org/show bug.cgi?id=1617609

[25] “Cookies default to SameSite=Lax - Chrome Platform Status.” [Online].
Available: https://chromestatus.com/feature/5088147346030592

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://github.com/whatwg/fetch/issues/382
https://www.usenix.org/conference/usenixsecurity18/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity18/presentation/chen-jianjun
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://ejj.io/misconfigured-cors
https://ejj.io/misconfigured-cors
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://hal.archives-ouvertes.fr/hal-03021256
https://www.rfc-editor.org/info/rfc6265
https://publications.cispa.saarland/3504/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://www.usenix.org/conference/usenixsecurity21/presentation/squarcina
https://www.usenix.org/conference/usenixsecurity21/presentation/squarcina
https://www.rfc-editor.org/info/rfc6454
https://letsencrypt.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://doi.org/10.14722/ndss.2019.23386
https://kinsta.com/browser-market-share/
https://datatracker.ietf.org/doc/draft-west-cookie-incrementalism/01/
https://datatracker.ietf.org/doc/draft-west-cookie-incrementalism/01/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior
https://bugzilla.mozilla.org/show_bug.cgi?id=1617609
https://bugzilla.mozilla.org/show_bug.cgi?id=1617609
https://chromestatus.com/feature/5088147346030592

	Introduction
	Background & Related Works
	Access Control Policy in Web
	Cookies
	SameSite

	Cross-Site Attacks
	Cache poisoning
	Related Works

	Threat Model
	CORS Flaws
	Methodology
	Collection
	Detection
	Exploitation
	Unauthenticated Victim
	Cache Poisoning

	Experiment
	Results
	Exploitation
	Unauthenticated Victim
	Cache Poisoning

	Discussion & Conclusion
	References

