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ABSTRACT
Web caches play a crucial role in web performance and scalabil-
ity. However, detecting cached responses is challenging when web
servers do not reliably communicate the cache status through stan-
dardized headers. This paper presents a novel methodology for
cache detection using timing analysis. Our approach eliminates
the dependency on cache status headers, making it applicable to
any web server. The methodology relies on sending paired requests
using HTTP multiplexing functionality and makes heavy use of
cache-busting to control the origin of the responses. By measuring
the time it takes to receive responses from paired requests, we can
determine if a response is cached or not. In each pair, one request
is cache-busted to force retrieval from the origin server, while the
other request is not and might be served from the cache, if present.
A faster response time for the non-cache-busted request compared
to the cache-busted one suggests the first one is coming from the
cache. We implemented this approach in a tool and achieved an
estimated accuracy of 89.6% compared to state-of-the-art methods
based on cache status headers. Leveraging our cache detection ap-
proach, we conducted a large-scale experiment on the Tranco Top
50k websites. We identified a significant presence of hidden caches
(5.8%) that do not advertise themselves through headers. Addition-
ally, we employed our methodology to detect Web Cache Deception
(WCD) vulnerabilities in these hidden caches. We discovered that
1.020 of them are susceptible to WCD vulnerabilities, potentially
leaking sensitive data. Our findings demonstrate the effectiveness of
our timing analysis methodology for cache discovery and highlight
the importance of a tool that does not rely on cache-communicated
cache status headers.
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1 INTRODUCTION
Web caches are servers placed between a client and an origin server
that store copies of responses to improve the websites’ performance,
availability and scalability. Moreover, web caches reduce the load
imposed on origin servers by directly serving resources that they
previously cached to the clients. For these reasons, web caches
have become crucial components of modern web architectures, and
are ubiquitous. Web caches can be placed anywhere on the path
between the client and the origin server, and frequently multiple
caches coexist in the same client-server path. To communicate
whether a response is coming from the origin server (a cache MISS),
or if it was cached (a cache HIT), caches employ specific response
headers called cache status headers. These headers are not standard-
ized, therefore, different cache technologies might use different and
custom header names and values. Previous studies have developed
heuristics to analyse these headers and distinguish between cached
and non-cached responses [22]. Web caches employ unique identi-
fiers called cache keys to identify cached resources. They comprise
the elements of HTTP requests that must match in different re-
quests for the web cache to issue the same response. They generally
include the path, the query string, and the value of specific headers.
The elements of a request that are included in the cache key are
called keyed. To forcefully receive a fresh response from the origin
server even if a web cache already holds a stored copy, we can
use cache-busting, a technique that consists of including random
modifications to specific keyed elements of requests (without intro-
ducing modifications that cause the response content to be different
compared to the non-cache-busted request). Cache busting is useful
when we need to test for web cache behaviours.

Techniques that detect cached responses based on cache status
headers are not effective when these headers are missing, wrong, or
use custom names and values that are not covered by the heuristics
used. For this reason, in this research, we develop a novel method-
ology that uses timing analysis to distinguish between cached and
non-cached responses, that can work against any web server, re-
gardless of whether it communicates the cache status of responses
or not. Our methodology is based on repeatedly sending paired
requests to a web server. When the two requests reach a web cache
at the same time and are processed concurrently, if only one of the
two is cached, it will consistently return to the client first and faster.
If, instead, both responses are coming from the origin server, they
will arrive at the client with an inconsistent order and timing.

To control which responses will be served by the origin server
and which by the web cache, we make heavy use of cache-busting
techniques. Before developing our methodology, we carried out a
preliminary experiment of different cache-busting techniques to
identify the most effective against a higher number of websites in
the wild. Combining all the techniques that we used, we are able to
cache-bust requests on 84.3% of websites. Our methodology relies
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on the multiplexing functionality to pair requests together and send
them in a single packet. We focus on HTTP/2 since it is the most
adopted version, but the same methodology applies to HTTP/3 too.

Our methodology works as follows: we send two groups of n
paired requests. In the first group, all requests are cache-busted (i.e.,
all responses come from the origin server), while for each pair in the
second group, only one request is cached-busted (i.e., one is possibly
coming from a web cache). We call the two groups Randomized
and Fixed, respectively. The idea is that, if the non-cache-busted
request is cached, the timing measurements in the two groups are
significantly different. To check that, we use a statistical test (t-test).

We implement this methodology in a tool and perform a pre-
liminary experiment to measure its accuracy compared with the
state-of-the-art heuristics based on cache status headers, estimating
an accuracy of 89.6%. However, we observed that in a vast majority
of the cases where our methodology classified the request as cached,
while the cache status headers reported a cache MISS, it was due
to an unpredictable behaviour of certain web cache technologies.
These caches always report cache MISS when two requests are
paired together, even if one of the two responses was a cache HIT.
We randomly selected 100 websites and manually verified that in
82 of them, the wrong classification of our methodology was due
to the behaviour mentioned above. We can therefore estimate that
the real accuracy of our tool is higher, and the reported accuracy
should be considered as a lower bound.

We then used our methodology to estimate the prevalence of
hidden web caches in the Tranco Top 50k, i.e., caches that do not
advertise the status of their responses in the cache status headers,
finding that 1.627 websites (5.8% of the 28.243 tested websites that
supported HTTP/2) present a hidden cache.

Finally, we use our novel timing analysis to detect caching to
create a methodology that can detect Web Cache Deception vul-
nerabilities in a black-box manner, and use it to test these 1.627
previously identified hidden caches. We find that 1.020 of them
cache dynamic content, that they should not be cached, and we
present case studies of Web Cache Deception vulnerabilities that
we successfully exploited to leak sensitive data of our test victim
accounts. These WCD vulnerabilities could not have been detected
with the previous state-of-the-art methodologies, highlighting the
importance of a methodology that does not rely on the cache status
headers.

1.1 Contributions
To summarize, we make the following contributions:

• We present a novel methodology to detect caching using
timing analysis. Our methodology is simple, does not rely
on cache-communicated cache status headers, and applies
to all web servers that use newer versions of HTTP.
• We conduct an experiment on the effectiveness of different
cache-busting techniques, to identify the most commonly
keyed elements of HTTP requests. We find that modifying
the query string is the most effective and that, combining
all techniques, we can cache-bust requests on 84.3% of the
tested websites.
• We conduct a large-scale experiment on the Tranco Top
50k using our novel detection methodology to measure the

prevalence of hidden caches, i.e., web caches that do not
provide the cache status headers of their responses.We detect
hidden caches on 1.627 websites.
• We use our novel cache detection methodology to test web-
sites for Web Cache Deception (WCD) vulnerabilities. We
find that 1.020 websites with hidden caches are vulnerable to
WCD vulnerabilities. We present case studies of well-hidden
vulnerabilities that, without our methodology, could not
have been identified.

Availability The code used for this research is available as an
open-source tool on the authors’ websites. 1

2 BACKGROUND
This section presents an overview of web caches and Web Cache
Deception vulnerabilities, HTTP/2 and timing attacks.

2.1 Web caches and reverse proxies
Web caches are intermediary servers that store frequently accessed
web content to enhance website performance, lowering loading
times, and reducing the computing loads on the origin servers.
Web caches can be deployed in multiple stages between the client
and the origin server, including the browser. Moreover, a path
between a client and a server might present more than one web
cache, potentially managed by different entities and organizations.

Web caches effectively act as proxies between clients, such as
web browsers, and origin servers, directly serving the responses
that they previously cached. When a client requests a web resource,
the proxy intercepts the request and checks if it already holds
a cached copy of the response. If the content is in the cache and
hasn’t expired, the cache delivers it directly to the client. Otherwise,
the cache issues a request to the origin server. When it receives
the response, it forwards it to the client and, if it matches some
pre-configured criteria, caches it for future visitors.

Content Delivery Networks. A Content Delivery Network (CDN)
is a geographically distributed network of servers that deliver web
resources (e.g., web pages, images, style sheets, script files) to users
faster and more reliably than a sole origin server. In CDNs, servers
are strategically located at geographically distributed data cen-
tres. This distribution places content physically closer to end-users,
significantly reducing the distance data needs to travel, and conse-
quently improving website loading times, leading to a better user
experience.

Cache Key. To understand whether the cache already holds a
cached response for a request, web caches employ cache keys. A
cache key is a unique identifier assigned to a piece of stored data in
a web cache. Cache keys include some specific elements of HTTP
requests that must match in subsequent requests to issue the same
cached response. Cache keys generally include the URL path of
the request and the query string, but can also be configured to
include specific headers, such as the Cookie and the Origin. The
elements of requests included in the cache key are called keyed.
The process of introducing modifications to the keyed elements of
HTTP requests is called cache busting.

1https://github.com/golim/hidden-web-caches-discovery
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Cache status headers. Cache status headers are used by web
caches and CDNs to communicate whether a response is coming
from a web cache or the origin server. Cache status headers are not
standardized, therefore, each caching technology might use differ-
ent header names and values. Previous studies have highlighted the
cache status headers names and values of the most popular caching
technologies and developed heuristics to read them and understand
the source of the responses [22].

2.2 Web Cache Deception
Web Cache Deception vulnerabilities arise when a web cache and
an origin web server disagree on whether a resource is cacheable
or not. As a result, an attacker can exploit WCD vulnerabilities
to induce a cache into storing content that should be considered
private, rendering it publicly accessible. Static content is the same
for all visitors of a website, and cannot include sensitive informa-
tion by definition; therefore, we can define WCD as the erroneous
caching of dynamically generated content. To exploit WCD vulner-
abilities, attackers generate an attack URL (generally comprising of
a non-existent file name and a static file extension) and use social
engineering techniques to induce a victim into visiting it. When the
victim visits the attack URL, the origin server generates a response
that includes their personal information. If the cache is configured
to cache content based on its URL, it will see the static file extension
and cache it, making it publicly accessible to the attacker through
the same attack URL.

2.3 HTTP/2
Hypertext Transfer Protocol (HTTP) is the application-level proto-
col that is used to transfer data on the web. HTTP/2 was released in
2015 and was the first major update since HTTP/1.1, which was first
published in 1997. HTTP/2 is based on TLS over TCP and maintains
the semantics of HTTP/1.1, but it changes the way that the data is
transferred. While HTTP/1.1 was a plain-text human-readable pro-
tocol, HTTP/2 is a binary protocol. HTTP/2 implements optimized
mappings of the HTTP/1.1 semantics to enable efficient use of the
connection, allowing multiple concurrent requests and responses
to be multiplexed over a single TCP connection and compressing
the headers. Requests multiplexing consists of the organization
of HTTP messages in streams, that are bidirectional sequences of
frames with the same identifier, generally representing a request-
response pair. Frames are the smallest protocol unit in HTTP/2:
they can be of different types (e.g., data, headers, settings) and have
an id that identifies the stream to which they belong [30]. Web
servers process the requests as soon as they have all the frames,
and send the response as soon as it is generated.

In 2022, the Internet Engineering Task Force (IETF) published
HTTP/3, which differs from HTTP/2 in that it uses the QUIC trans-
port protocol instead of TCP. QUIC is a transport protocol that
runs on top of UDP and provides multiplexing, encryption and
congestion control directly. HTTP/3 was developed to solve the
problems caused by the fact that TCP has no visibility over HTTP/2
multiplexing. Therefore, some features of HTTP/2 are delegated to
QUIC in HTTP/3 (i.e., multiplexing and flow control), while others
are implemented on top of it [3].

2.4 Timing Attacks
Timing attacks focus on indirect leaks of information; specifically,
the time it takes a system to perform certain tasks. Bymeasuring the
time variations between the execution of different actions, attackers
can potentially extract sensitive data from a system. Timing attacks
are more effective when performed locally, due to the absence
of network jitter and delay, but previous studies during the last
twenty years have shown that they are a viable attack vector over
the network too. Timing attacks leverage the unintentional side
effects of a system’s operation. This makes them particularly hard
to detect and requires careful design and implementation of security
measures in software systems to prevent time-based leaks.

Timeless Timing Attacks (TTA), first introduced by Van Goethem
et al. [14], are a novel type of timing attacks that improve the ac-
curacy and greatly lower the required number of requests. They
are based on measuring the relative timing difference between re-
quests that are processed concurrently by the web server, while
classical timing attacks consist of independent measurements over
the network. To make the two executions concurrent, this attack
technique sends the two requests in a single packet, enabling attack-
ers to observe all the timing differences greater than the network
jitter introduced once the requests arrive at the server, such as the
delay introduced by the network card, decryption and ordering of
packets. Moreover, timeless timing attacks observe the response
packets sequence number (which is monotonically increasing in
TCP) to identify the request that the server finished processing first.
To send two requests in a single packet, an attacker can exploit
HTTP/2 and HTTP/3’s multiplexing functionalities. This way, two
paired requests will reach the server at the same time and, ideally,
be processed concurrently.

3 RELATEDWORKS
This section provides an overview of the related works on timing
attacks and web cache attacks and vulnerabilities.

3.1 Timing Attacks
To develop our timing analysis methodology, we take inspiration
from timing attacks. Timing attacks have been known and used
since 1996 when Kocher introduced them and showed how they
could be used to find Diffie-Hellman exponents, factor RSA keys,
and break other cryptosystems [20]. Initially, timing attacks have
only been used to break cryptosystems locally [9, 26, 27]. Later,
several studies demonstrated the practicality of timing attacks
over the network, enabling extracting private keys from network
servers [1, 2, 5, 6, 8].

Felten and Schneider show how to exploit a browser’s cache from
a malicious web page to determine if a user had recently visited
another unrelated web page by issuing requests and checking if the
time required to get the response is less than a threshold [10]. Bortz
et al. show two types of timing attacks against websites: direct
timing, where private information is leaked directly by the attacker
measuring the response time from the server, and cross-site tim-
ing, where a malicious website obtains information on a different
website from the user’s perspective [4]. Jia et al. show how to infer
the geographical location of victims using timing attacks, exploit-
ing the browser’s cache [17]. Gelernter and Herzberg bypass the
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same-origin policy and extract sensitive information by measuring
the time it takes for the browser to receive the responses to search
queries [12]. Van Goethem et al. show that modern browsers ex-
pose new side channels that can be used to acquire accurate timing
measurements regardless of network contentions and analyse new
browser features that can be exploited to obtain substantially more
timings [31]. All major browsers implement defence mechanisms
to protect against timing attacks based on lowering the resolution
of the timing information; however, Schwarz at al. prove this ap-
proach ineffective and present new mechanisms to obtain absolute
and relative timings [28]. Smith et al. propose attacks to leak the
browsing history of victims [29], and Sanchez-Rola et al. show a
way to fingerprint hardware devices timing the execution of cryp-
tographic browser API functions that can be mounted remotely
with a malicious website and JavaScript code [25]. Vanderlinden et
al. use the server-timing header value, which generally provides
server-side timing information accurate to the millisecond, to re-
duce the impact of jitter on remote timing attacks. They show that
this enables significantly reducing the required number of requests
for a successful attack [33]. Similarly, Vanderlinden et al. use timing
information exposed in HTTP response headers by backend servers
to reduce the jitter included in an attacker’s sample. Specifically,
they use the timestamp of responses included by web servers in the
Date header to synchronize the attacker to the target server, im-
proving classical timing attacks by reducing the number of requests
necessary for a successful attack [32].

3.2 Web Cache Attacks
Web cache poisoning is an attack that consists of injecting malicious
content into a web cache that is then served to unsuspecting victims.
Kettle presents a methodology to detect cache poisoning vulner-
abilities and shows attacks against popular websites and caching
technologies [18, 19]. Chen et al. present cache poisoning attacks
exploiting inconsistencies in the interpretation of the host header
by different HTTP implementations [7]. Nguyen et al. show how
cache poisoning vulnerabilities can lead to Denial of Service [23].

In 2017, Gil introduces Web Cache Deception attacks in [13].
Mirheidari et al. present an automated detection methodology to
detect WCD vulnerabilities and use it to measure their prevalence
in a large-scale measurement [21]. In 2022, Mirheidari et al. present
a novel methodology which requires no authentication to detect
WCD vulnerabilities and show how these vulnerabilities can also
be used to steal security tokens from victims, leading to severe
consequences for their security. Their methodology is based on the
lookup of cache status headers in responses and content identicality
checks [22].

4 RESEARCH GOALS
Previous studies have used lookups of the cache status headers
to distinguish cached responses from responses coming from the
origin server. This task is frequently needed for the detection of
several web cache vulnerabilities, such as Web Cache Deception
and cache poisoning. However, the algorithms to detect if a request
is cached fall short when the cache status headers are missing, or
wrong, or use custom names and values for the headers. This might
happen for several reasons. First, websites might want to hide the

presence of a web cache to avoid attacks, in an attempt to obtain
security through obscurity. Moreover, custom web caches and un-
common caching technologies might use uncommon names and
values for the cache status headers that were not previously seen
by the developers of cache detection techniques. For this reason,
we develop a methodology to identify cached responses and distin-
guish them from non-cached ones without relying on cache status
headers. We refer to the web caches that do not advertise the cache
status of their responses in the headers as hidden caches.

4.1 Research Questions
The goal of our research is to answer the following research ques-
tions.

(Q1) Can timing analysis be used to detect whether a response
is cached or if it is coming from the origin server? How
accurate are they?

(Q2) How many websites on the Tranco Top 50k use a web cache
but do not communicate it with cache status headers?

(Q3) Are hiddenweb caches (i.e., the caches that do not issue cache
status headers) vulnerable to common cache vulnerabilities?

5 METHODOLOGY
Our novel methodology to detect web caches employs timing anal-
ysis and is composed of two main phases. In the first phase, we
collect the timing measurements, exploiting HTTP multiplexing
and using cache busting. In the second phase, we read the timings
collected in the first phase to infer if there is a cache or not.

5.1 Collection of Timing Measurements
In this first phase, we collect the measurements that will be used
in the second phase to infer the presence of a cache. This phase is
based on HTTP multiplexing and cache busting, respectively used
to send the two requests within a single packet and ensure that the
responses are served by the origin server and not by the cache. An
overview of the timing analysis that we perform is presented in
Figure 1. The idea behind our methodology is to send:

(1) n pairs of requests in a single packet where both requests
have random cache busters (i.e., the responses should always
be served by the origin server). We call this group of request
pairs Randomized.

(2) n pairs of requests in a single packet where the first request
has a random cache buster and the second request has an
already used cache buster (i.e., that was included in a previ-
ously sent request). In this way, the first response should be
served by the origin server, and the second by the cache. We
call this group of request pairs Fixed.

In our methodology, n is a fixed number decided before the
experiment. We observe the order of the responses and measure
their arrival time difference. By comparing the order of arrival of
responses and the time measurements of the two groups, we can
determine whether there is a cache in the path from the client to
the origin server. Note that we do not measure the absolute time
required for responses to arrive but only the relative time elapsed
between receiving one response and the other.
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Client Web Cache Origin Server
WWW

Randomized group1

Fixed group2

nth request pair
GET /?cache-buster=2n-1

GET /?cache-buster=2n

HTTP/2 200 OK

HTTP/2 200 OK

Client Web Cache Origin Server

...

nth request pair
GET /?cache-buster=n

GET /?cache-buster=fixed

HTTP/2 200 OK

HTTP/2 200 OK

GET /?cache-buster=2n-1

GET /?cache-buster=2n

HTTP/2 200 OK

HTTP/2 200 OK

GET /?cache-buster=n

HTTP/2 200 OK

Figure 1: Overview of our cache detection methodology. Note that, for the Fixed group, we perform a request with fixed
cache-busters before collecting the time measurements, so that the response should already be stored in the cache. We see
that, in the Randomized group, all requests are forwarded to the origin server, and their order of arrival back at the client is
inconsistent. For the Fixed group, instead, the response to the request with a fixed cache-buster is directly issued by the web
cache, and will therefore consistently arrive at the client first and faster.

Cache Busting. Since we do not have visibility over what fields
are included in the cache key by the web caches, we introduce
modifications in all the fields that we can modify without obtaining
a request for a different resource (e.g., we do not modify the path
of the request and the Host header). Specifically, we introduce
modifications in the query string by including new parameters with
random names and values, and in the following request headers:
• Origin: all web caches should include the value of the Origin
header in their response so as not to risk introducing Denial
of Service vulnerabilities, as shown in [16]. Since an Origin
is defined as the protocol, the host and the port, we do not
modify these to avoid receiving a different response. Instead,
we include a randomly generated path in the value of the
Origin header, that will not influence the response but is
likely included in the cache key.
• User-Agent: including the User-Agent in the cache key
should not be necessary if the web pages correctly imple-
ment and use responsive designs. Since User-Agent values
are extremely varied, including them in the cache key might
lower the effectiveness of a web cache.

• X-Forwarded-Host and X-Forwarded-Scheme: used by prox-
ies to communicate the original host and scheme to the ori-
gin server (that might differ). These headers are generally
included in the default cache key of caches and CDNs.
• X-Method-Override: used by web frameworks to override
the HTTP methods of requests. It is generally included in
the cache key to avoid cache poisoning vulnerabilities.

Moreover, we include random modifications in the headers’ val-
ues in the Vary response header. The Vary response header is used
to communicate what parts of a request may induce differences
in the server’s responses (not including the method and the URI).
Therefore, this header is generally used to communicate to a cache
what values of a request must coincide with the ones of the cached
response for it to serve the response (i.e., what values should be
included in the cache key) [11]. For example, if a response contains
the Vary: Accept-Encoding header, the cache should only serve
the response if the Accept-Encoding header of the request is the
same as the one of the cached response.

To evaluate the effectiveness of the different cache-busting tech-
niques, we conducted an experiment on the Tranco Top 10k to
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Table 1: Results of our experiment on different cache-busting
techniques on the Tranco Top 10k. Percentages are calculated
over the total number of 3494 websites. Note that only 3128
websites included the Vary header in their responses. Collec-
tively, with the techniques that we employed, we were able
to cache-bust requests on 2946 websites.

Cache-busting technique Cache busted

Query string 2112 (60.4%)
Origin header 817 (23.4%)
User-Agent header 78 (2.2%)
X-Forwarded-Host header 327 (9.4%)
X-Forwarded-Scheme header 329 (9.4%)
X-Method-Override header 338 (9.7%)
Headers in Vary header 616 (17.6%)

All techniques combined 2946 (84.3%)

identify what elements of HTTP requests are included in their
cache key. For each website, we:

(1) Crawl the website and identify a cached response using
Cache Header Heuristics, i.e., a lookup of the cache status
headers of the responses.

(2) Send one request for each cache-busting technique tested;
i.e., we send an HTTP request introducing a modification to
a single element of the request.

(3) Check if the response for each request is cached or not. If it
is not cached, the modified element is included in the cache
key and the cache-busting technique works, otherwise, the
element is not part of the cache key.

Table 1 presents the effectiveness of different cache-busting tech-
niques, based on our experiment on the Tranco Top 10k. We iden-
tified a cached response on 3494 websites. Collectively, with the
techniques that we employed, we were able to cache-bust requests
on 2946 websites. On the 3128 websites that included the Vary
header in their responses, introducing modifications in the headers
included in it effectively cache-busted the requests only on 616
websites. Therefore, 2512 websites include some header names in
the Vary response header but do not configure their web cache(s) to
include them in the cache key. In our experiments, we use all tech-
niques combined to maximise the likelihood of effectively cache-
busting the request.

HTTP Multiplexing. To send two requests in the same TCP packet,
we use the same methodology exploited by Van Goethem et al. to
perform timeless timing attacks in [15], sending two HEADERS frames
containing the two HTTP/2 requests in a single packet. Sending
the two requests within a single TCP packet eliminates the effect of
network latency and jitter, enabling timing measurements that are
not influenced by them. Our methodology can also be implemented
using HTTP/3 multiplexing, which enables simultaneously sending
multiple requests over a single connection.

5.2 Reading the Timings
In the second phase, we read the time measurements collected in
the first phase to infer whether the responses to the sent requests

are coming from a web cache or if they originated from the backend
server. To do this, we employ a statistical test.

Statistical Test. In this step, we use a t-test to determine whether
there is a statistically significant difference between the means of
the measurements of the Randomized and Fixed group of paired
requests. If the difference is significant, we conclude that there is a
cache in the path from the client to the origin server (we set the
threshold of the p-value to 0.01). Otherwise, we conclude that there
is no cache. We use the t-test as a classifier where, depending on
a set threshold, we can classify requests as cached or not. Before
performing the statistical test, to enhance its accuracy, we employ
two heuristics to pre-process the data. First, we remove the time
measurements with outlier values 2 to prevent delayed packets
(that might be due to network congestion, server overload and
other unpredictable conditions) from negatively influencing our
classification. Then, we multiply the negative values in the Fixed
group measurements by a factor of 5 when the group’s mean is
negative. We expect negative values when a response is cached
because the request with a fixed cache buster is placed as second,
and it will arrive before the response to the first request. We do
this to amplify negative values, making them more significant and
easing the statistical test classification. The factor value is based on
our preliminary experiments and observations. In the Fixed group,
when a cache is present, we expect negative timing measurements
with low standard deviation.

6 EXPERIMENTS
In this section, we describe the experiments we performed to test
our methodology for detecting web caches and report the results.
First, we carried out a preliminary experiment on websites in the
Tranco Top 10k [24] 3 that report the cache status of their responses
in the headers to validate our hypothesis that timing analysis can
be used to detect web caches and measure the accuracy of this
technique.

Next, we performed a large-scale measurement on the Tranco
Top 50k to measure the prevalence of hidden web caches. For the
websites that advertise the cache status of responses in the headers,
we also check if the classification matches the reported status to
better estimate the accuracy of our detection technique.

In both experiments, our crawler runs without authentication,
meaning that it can only visit and test the web pages that are
publicly accessible. Our crawler is developed in Python and uses
the requests library to perform the HTTP requests. To avoid our
requests being blocked by the websites, we use a real browser user
agent and we limit the number of performed requests per second.
We only tested websites that support HTTP/2 in our experiments
because of the availability of off-the-shelf libraries and because it
is more widely adopted compared to HTTP/3; we leave the task of
implementing an HTTP/3 version of our tool for future work.

2In particular, we compute the data’s average and standard deviation and the absolute
difference between the time difference and the average. If the absolute difference
is lower than the standard deviation multiplied by a factor of 2, the data point is
considered an outlier and removed. The factor was selected manually to remove the
highest number of outliers while not losing too many data points.
3In all our experiments, we use the list generated on 29 January 2024, available at
https://tranco-list.eu/list/QGN64.
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Table 2: On the left, a sample of the time measurements of a timing attack against a website that presents a web cache; on
the right, a sample where the responses are not cached. We can observe that, where the responses in the Fixed group are
cache, while the timings for the Randomized group are extremely variable, the timings for the Fixed group are consistent (i.e.,
negative with a low standard deviation). When instead all the responses are coming from the origin server, we see that both the
Randomized and Fixed group’s time measurements are inconsistent. Negative timings mean the response to the second request
in the pair arrived first. CHH refers to cache header heuristics algorithm from [22]. For brevity, this example only shows 5 time
measurements for each group of paired requests, while in all our experiments we sent 10. The two samples are from different
websites.

Time measurements with cached responses Time measurements with no cached responses

Group Time diff. (ms) Cache Status 1 Cache Status 2 Group Time diff. (ms) Cache Status 1 Cache Status 2
-60.09 MISS MISS 34.37 MISS MISS
62.42 MISS MISS 97.29 MISS MISS

Randomized -58.35 MISS MISS Randomized -486.03 MISS MISS
67.32 MISS MISS 132.2 MISS MISS
-77.45 MISS MISS -325.18 MISS MISS
-600.95 MISS HIT -169.52 MISS MISS
-504.63 MISS HIT 12.2 MISS MISS

Fixed -591.15 MISS HIT Fixed -409.99 MISS MISS
-516.49 MISS HIT -31.29 MISS MISS
-536.35 MISS HIT 217.21 MISS MISS

Method Cache Status Method Cache Status
CHH Cache CHH No Cache
Statistical test Cache Statistical test No Cache

Table 3: The results of the preliminary experiment over the
Tranco Top 10k. *The percentages of “Reachable”, “Tested”,
“Analysed” and “Discarded” are calculated over the 10k web-
sites from the Tranco list. The percentages of “Correct clas-
sification” and “Wrong classification” are calculated over
the number of correctly analysed sites (1.946). 2.621 domain
names could not be reached because they timed out, did not
listen for HTTP requests or had other errors.

Number of sites Percentage*

Reachable 7.379 73.8%
Tested 2.289 22.9%
Discarded 343 17.6%
Analysed 1.946 19.5%

Correct classification 1.743 89.6%
Wrong classification 203 10.4%

Table 2 presents an example of timing measurements in a sce-
nario where the second response of the Fixed group is coming from
a cache (on the right) and one where all the responses are com-
ing from the origin server. We can observe that, when one of the
two responses of two paired requests is cached, the time measure-
ments are all negative and close to each other with a low standard
deviation.

6.1 Preliminary Experiment
This preliminary experiment aims to understand if it is possible to
infer the presence of a web cache by timing the responses. Moreover,
we measure the accuracy of the t-test in classifying whether a
cache is present or not. To do this, this experiment only targets
websites that present cache status headers in their responses and
uses it as a ground truth for the cache status of the responses. If
during the crawling phase we do not identify a request that gets
cached, we issue a request to a non-existent path to obtain a 404
Not Found response (frequently cached). We do this because, in
this experiment, we are not interested in the content of the cached
response, but only in the response being cached.

During this experiment, we observed multiple websites issuing
most likelywrong or untruthful cache status headers, only reporting
cache misses, which lowered the accuracy value of the t-test. We
investigated multiple cases where, based on the time measurements,
a cache is almost certainly present to understand why the cache
headers do not report the cache HITs. We observed that this is
mainly due to CDNs only reporting cache MISSes in the responses
to paired requests, even when the responses are cached. Since CDNs
are black boxes for us, we cannot provide possible explanations
for this behaviour. To better estimate the real accuracy of the t-
test in classifying cached responses based on time measurements,
we then selected 100 websites for which the cache headers report
only MISSes, while the t-test reports the presence of a cache, and
manually verified if a cache is indeed present by sending requests
in single packets and inspecting their cache status headers.
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In this experiment, we crawl the websites from the Tranco Top
10k starting from their homepage and, for each URL, we check if
it reports the cache status headers. If it does, we collect the time
measurements. Recall that we send two batches of paired requests,
one where both paired requests are served by the origin, and the
second where one of the two paired requests is instead served by
the cache. Based on our initial experiments and observations, we set
the number of request pairs n to 10 for each batch. Experimentally,
we observed that a smaller number of request pairs deteriorated the
accuracy of our tool, while more requests did not provide significant
improvements.

In the first batch, we expect both responses of paired requests to
be cache MISS, i.e., they come from the origin, and in the second
we expect one cache MISS and one cache HIT, i.e., one response
from the origin and one from the cache. We discard from our data
all the measurements with more than one wrong cache status in
any of the two batches since we observed that a single error in
the cache statuses does not compromise the overall quality of the
classification. This number is a good compromise between the
stress imposed on the tested websites and the accuracy of our
classification. To limit the overhead caused by our tests on the
targeted websites, we also limit our crawler to test at most 10 URLs
on at most 10 FQDNs for every root domain in the Tranco list. It is
important to note that we stop our tests once we find one request
that gets cached.

6.1.1 Results. Table 3 presents the results of our preliminary ex-
periment. Of the 10k domain names in the Tranco Top 10k list, only
7.379 were reachable; the remaining 2.621 domain names timed out,
did not respond to HTTP requests or redirected to another domain
included in the list. Of the reachable websites, 2.289 present cache
status headers and support HTTP/2 and were therefore tested. We
then discarded 343 websites from our data due to responses with
the wrong cache status (i.e., a cached response where we expect a
response coming from the origin, or vice-versa), resulting in 1.946
correctly analysed websites. On these, our methodology correctly
identified the cache status of the responses on 1.743 websites (89.6%)
and failed on 203 websites. However, as we mentioned previously,
looking at the time measurements we hypothesise that a high per-
centage of these wrongly labelled measurements are due to the
caches advertising a wrong or untruthful cache status, rather than
our methodology failing to correctly identify it. For this reason,
we selected 100 websites and manually analysed them to validate
our methodology’s conclusion and found that 82 wrongly labelled
measurements were due to wrong cache statuses being advertised
by a web cache, and were therefore false negatives. Based on this
data, we estimate that the accuracy of our technique in identify-
ing the cache status of responses only based on timing analysis
is higher compared to the one reported, which should be consid-
ered as a lower bound. This experiment answers our first research
question (Q1), showing that timing analysis is highly effective in
detecting cached responses and distinguishing them from responses
originating from the backend server.

6.2 Large-scale Experiment
In this experiment, we do not filter the websites based on the pres-
ence of cache status headers in the responses, but we employ our

Table 4: The results of the large-scale experiment over the
TrancoTop 50k. *The percentages of “Reachable” and “Tested”
calculated over the 50k websites from the Tranco list. All the
other percentages are calculated over the number of correctly
analysed sites (28.243). 10.841 domain names could not be
reached because they timed out, did not listen for HTTP
requests or had other errors.

Number of sites Percentage*

Reachable 39.159 78.3%
Tested 28.243 56.5%

Present cache status headers 10.543 37.3%
Correct classification 7.280 25.8%
Wrong classification 3.263 11.6%

No cache status headers 17.700 62.7%
Cache 1.627 5.8%

No cache 16.073 56.9%

methodology on all the websites in the Tranco Top 50k. The goal of
this experiment is to discover hidden caches that do not advertise
the cache status headers in their responses. Similarly to the prelim-
inary experiment, we set the number of request pairs n to 10 for
each group and limited our crawler to test at most 10 URLs on at
most 10 FQDNs for every root domain in the Tranco list. For each
URL, we collect the timing measurements and use the statistical
test to infer the cache status of the response. We also check if the
classification matches the cache status reported in the headers if
they are present. It must be noted that, due to the possible absence
of cache status headers, we have no way of checking if the cache-
busting techniques that we apply to the requests are effective or
not. For this reason, it is possible that in some cases it will appear
as though there is no cache, while in reality a cache is present and
cannot be detected since no response is coming from the origin
server (i.e., there is no timing difference to observe between the
Fixed and Randomized groups).

In this experiment, we use the t-test as we did in the preliminary
experiment and we apply the same pre-processing techniques to
the time measurements.

6.2.1 Results. Table 4 presents the results of our large-scale mea-
surement experiment on the Tranco Top 50k. Of these 50k domain
names, 10.841 could not be reached due to timeouts, redirects, and
the absence of an HTTP server listening. We successfully visited
39.159 domains, 28.243 of which supported HTTP/2 and could there-
fore be tested with our methodology.

Of the 28.243 correctly tested websites, 10.543 advertise cache
status headers in their responses, which we compared against the
classification of our methodology. Using the cache status headers
as a ground truth (that, as we saw in our preliminary experiment,
is only the best compromise available), 7.280 were correctly clas-
sified by our methodology (69.1% over the 10.543 websites that
present cache status headers), while for the remaining 3.263 web-
sites (30.9%), our methodology gave an incorrect classification. We
hypothesize that the accuracy in this experiment is lower due to
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the lower popularity of the websites tested, which might use less ef-
ficient cache technologies and make less use of CDNs. For example,
less popular websites might employ web caches placed on the same
machine as the origin server. This results in smaller differences in
the time measurements for cached responses and responses coming
from the origin server. In this experiment, due to the larger sample
size tested, we did not perform a manual validation of the results.

17.700 websites that we correctly tested did not advertise the
cache status of their responses in the response headers (or used
custom names and values for their headers that are not covered by
the cache header heuristics). Of these, our methodology classified
1.627 websites as having a hidden web cache, and the remaining
16.073 as not having a web cache. This answers our second research
question (Q2), estimating the prevalence of hidden caches at 5.8%.

7 VULNERABILITIES DETECTION
Now that we have a methodology that detects the presence of
hidden web caches, we use it to detect vulnerabilities that would
otherwise be extremely difficult to spot. Specifically, we use it to
detect Web Cache Deception (WCD) vulnerabilities. Web cache
vulnerabilities are generally extremely complicated to detect auto-
matically, mainly because these vulnerabilities exist when the cache
interacts with different components of an architecture in a complex
system (e.g., an origin server, another web cache, or a proxy). For
WCD, instead, previous studies have presented effective automated
detection methodologies [21, 22]. In this section, we describe how
we tested the identified hidden caches for WCD vulnerabilities and
present the results of our analysis.

7.1 Detection Methodology
Algorithm 1 presents a simplified pseudo-code for our detection
methodology. We crawl each site to test and, for each URL that
we visit, similarly to Mirheidari et at. [22], we test whether the
response includes dynamic content or if the page is static. We do
this by performing a simple string comparison of the responses.
If the response is dynamic, we generate two attack URLs (lines
1-2), i.e., we modify the URL, including a path confusion payload
and a WCD payload. A WCD payload comprises a non-existent file
name and a static file extension (we use .css). Again, we check
whether the response to the attack URLs is dynamic (lines 3-5). We
perform this check because a WCD attack aims to induce a web
cache into storing dynamic content that could contain sensitive
data; a static file that is the same for all visitors is unlikely to
include sensitive information. If the response to the attack URL is
dynamic, we proceed with the timing analysis. The idea behind this
methodology is to detect whether a response that includes dynamic
content is cached and, therefore, if the website is vulnerable to
WCD. Note that this definition of Web Cache Deception is wide
and does not consider what data is mistakenly cached; instead, it
is based on the idea that a web cache should not publicly cache
dynamic pages.

Next, we send two groups of paired requests as follows:
(1) n pairs of requests in a single packet to the base URL (i.e.,

the URL without added payloads), where both requests have
random cache busters, i.e., the responses should always be
served by the origin server (line 7-8).

(2) n pairs of requests in a single packet where the first request
has a random cache buster and the second request is to a
single fixed attack URL (generated at line 10), i.e., the first
response should be served by the origin server, the second
by the cache if the website is vulnerable to WCD (lines 12-13).

We observe the order of arrival and measure the time elapsed
between receiving the responses of paired requests and, using the
t-test, we check if there is a significant difference in the timings
between the two groups of paired requests (lines 15-16). If the
difference is significant, we conclude that the response to the WCD-
payloaded request is cached and, therefore, the website is vulnerable
to Web Cache Deception.

Algorithm 1: Simplified pseudo-code for our WCD de-
tection methodology based on timing analysis. 𝛼 is the
significance level for the statistical test.
input :URL

1 𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿1 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿 (𝑈𝑅𝐿) ;
2 𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿2 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿 (𝑈𝑅𝐿) ;
3 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑔𝑒𝑡 (𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿1) ;
4 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑔𝑒𝑡 (𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿2) ;
5 if 𝑟𝑒𝑠𝑢𝑙𝑡1 ≠ 𝑟𝑒𝑠𝑢𝑙𝑡2 then
6 𝑡𝑖𝑚𝑖𝑛𝑔𝑠1 = [ ];
7 repeat n times
8 𝑡𝑖𝑚𝑖𝑛𝑔𝑠1.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑖𝑚𝑖𝑛𝑔𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (

𝑐𝑎𝑐ℎ𝑒𝐵𝑢𝑠𝑡 (𝑈𝑅𝐿), 𝑐𝑎𝑐ℎ𝑒𝐵𝑢𝑠𝑡 (𝑈𝑅𝐿) ) ) ;
9 end

10 𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿 (𝑈𝑅𝐿) ;
11 𝑡𝑖𝑚𝑖𝑛𝑔𝑠2 = [ ];
12 repeat n times
13 𝑡𝑖𝑚𝑖𝑛𝑔𝑠2.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑖𝑚𝑖𝑛𝑔𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (

𝑐𝑎𝑐ℎ𝑒𝐵𝑢𝑠𝑡 (𝑈𝑅𝐿), 𝑎𝑡𝑡𝑎𝑐𝑘𝑈𝑅𝐿) ) ;
14 end
15 if 𝑡_𝑡𝑒𝑠𝑡 (𝑡𝑖𝑚𝑖𝑛𝑔𝑠1, 𝑡𝑖𝑚𝑖𝑛𝑔𝑠2) ≤ 𝛼 then
16 return WCD detected
17 end
18 end

7.2 Experiment
We tested all 1.627 sites where we detected the presence of a hidden
cache during our large-scale analysis of the Tranco Top 50k. Sim-
ilarly to the previous experiments, we set the number of request
pairs n to 10, and limit our crawler to visit at most 10 URLs on
at most 10 FQDNs for every website that we test to limit the load
imposed by our analysis on the servers. We use the following WCD
payloads in our tests, selected based on our previous experience
and experiments:
• Path parameter: /
• Encoded question mark: %3F
• Encoded semicolon: %3B

7.3 Results and Case Studies
Of the 1.627 sites that our methodology detected as presenting a
hidden cache, we detected that 1.020 (62.7%) are caching dynamic
content. As black-box testers, we can’t understand whether these
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websites are doing that deliberately, or if that indicates aWeb Cache
Deception vulnerability. Testing all the affected websites for WCD
vulnerabilities would be an extremely onerous manual task, and it
is out of the scope of our research.

To validate our findings, we manually analysed a subset of these
websites, limiting our tests to 35 randomly sampled sites among
the ones caching dynamic content. In this analysis, our goal is to
understand whether the identified vulnerabilities can be exploited
to steal victims’ sensitive information. Even if a site is caching
dynamic information, this does not directly imply that the site is
leaking private data, and the dynamic parts of web pages could be
harmless content, such as timestamps and random error codes.

We registered test accounts on the sites that did not require per-
sonal information during the registration phase (e.g., a valid phone
number, or a payment card), excluding the others. We successfully
created a test account on 19 websites. Next, we checked how many
of them cache dynamic content of pages also when the visitor is
authenticated, resulting in 15 websites. Finally, we manually tested
these websites to check if they leak sensitive information of authen-
ticated users, finding that 5 websites are vulnerable to Web Cache
Deception and leak private data.

Following we briefly describe the consequences of the vulnera-
bilities discovered during the manual analysis.

Case Studies. Our tests uncovered three large e-commerce web-
sites vulnerable to WCD attacks. All of them leak personal informa-
tion of the target victims, such as their email, geographical location
and their shopping cart. Moreover, we discovered a large micro-
blogging website vulnerable to WCD that leaked the emails of the
target victims. It is important to specify that these vulnerabilities
could not have been discovered using the state-of-the-art WCD
detection techniques, due to the lack of cache status headers in the
sites’ HTTP responses. This highlights that our novel methodology
is crucial for identifying well-hidden vulnerabilities that would
otherwise be impossible to spot and detect.

8 DISCUSSION
All state-of-the-art techniques to detect whether an HTTP is cached
or not rely on cache status headers. These techniques are ineffective
when web caches do not communicate the cache status of responses,
when the headers they use have custom names and values, or when
the cache status communicated is wrong. We developed a novel
methodology to overcome this limitation that can distinguish be-
tween cached and non-cached responses using timing analysis,
without relying on the response headers.

We first performed a preliminary experiment on websites that
present cache status headers to investigate whether timing analysis
is a viable technique to distinguish between cached and non-cached
responses. Comparing the classification of our tool with the cache
status communicated in the response headers, we estimated an
accuracy of 89.6%. Moreover, we manually verified the cache status
headers on 100 randomly selected websites where our methodology
gave an incorrect classification, finding that in 82% of the cases
it was due to the website communicating a wrong cache, rather
than a misclassification of our methodology. This hints to us that
the real accuracy of our tool is higher compared to the one we
measured. We answer our first research question (Q1) affirmatively,

concluding that timing analysis is highly accurate in detecting
cached responses.

We then used our novel methodology and tool to investigate
the prevalence of hidden caches on the Tranco Top 50k. We use
the term hidden caches to refer to those web caches detected by
our tool that do not communicate the cache status of responses in
the headers. On 1.627 websites that did not present cache status
headers in their responses, we detected a cached response, hinting
at the presence of a hidden web cache. We can therefore estimate
that hidden caches are present on 5.8% of websites that support
HTTP/2 in the Tranco Top 50k, answering our second research
question (Q2).

Finally, we employed our novel methodology to detect Web
Cache Deception vulnerabilities in the hidden caches identified
during our large-scale experiment on the Tranco Top 50k, finding
that 1.020 websites out of 1.627 (62.7%) cache dynamic responses.
Caching dynamic responses is not necessarily an indication of a vul-
nerability, but it certainly is an unusual behaviour that, in specific
circumstances, might lead to the leakage of sensitive information
of the websites’ visitors. We manually investigated 35 randomly
sampled websites that cache dynamic data and identified 5 web-
sites vulnerable to WCD attacks that could be exploited to leak
sensitive information about victims. We find that hidden caches
are affected by common cache vulnerabilities and a vast majority
of them cache content that they should not, answering our third
research question (Q3).

The methodology that we present can be useful for website own-
ers and security researchers to identify well-hidden vulnerabilities
that would otherwise be impossible to spot. Our results confirm that
cache vulnerabilities are highly prevalent on the web, and require
major efforts by website operators not to expose internet users to
attacks that might violate their privacy and security.

8.1 Ethical Considerations
During our experiments, we minimized the impact of our tests on
the load of the targeted servers by limiting the number of requests
performed as much as possible and by slowing our requests to no
more than two paired requests every half a second. Specifically,
during the crawling phase, we limit our tool to visit at most 10 pages
on at most 10 FQDNs, for a maximum of 100 requested web pages.
In reality, as most of our tests were performed on a single page for
each domain in the Tranco list, we stop the crawling phase once we
identify a candidate page where we can successfully perform our
tests. In both experiments, our timing analysis comprised two runs
of 10 paired requests each, resulting in 40 requests sent. We argue
that this number is a good compromise between the accuracy of
the timing analysis and the excess load introduced on the servers
by our tests. When testing for web cache vulnerabilities, we never
attacked real users of the target websites but always used test
accounts controlled by us. We never leaked, or tried to leak, any
personally identifiable information of real internet users and we
never injected any malicious payload in the tested web caches.
Finally, we are currently in the process of responsibly disclosing all
the identified Web Cache Deception vulnerabilities that lead to the
possible leakage of victims’ sensitive information to the impacted
parties through their coordinated vulnerability disclosure channels.
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9 CONCLUSIONS
In this paper, we presented a novel methodology for detecting
cached responses using timing analysis. This methodology over-
comes the limitations of previous approaches that rely on cache
status headers, which are not standardized and can be missing or
unreliable. Our method applies to any web server that supports
HTTP/2 or HTTP/3, regardless of its cache disclosure practices.
We developed a timing analysis-based methodology that achieves
an estimated accuracy of 89.6% in differentiating between cached
and non-cached responses. We identified an uncommon behaviour
where certain web caches only report cache MISSes for paired
requests, even if one response is a cache HIT, highlighting the limi-
tations of solely relying on cache status headers to detect caching.
Using our methodology, we estimated that 5.8% of websites within
the Tranco Top 50k that support HTTP/2 employ hidden caches
that do not advertise their presence through cache status headers.
We leveraged our timing analysis methodology to detectWeb Cache
Deception (WCD) vulnerabilities in a black-box manner, discov-
ering that 1.020 of the identified hidden caches were susceptible
to WCD vulnerabilities, potentially leading to leakage of victims’
sensitive data. Our findings demonstrate the effectiveness of our
novel timing analysis methodology for cache detection and WCD
vulnerability identification. This methodology provides a valuable
tool for security researchers and website operators to assess caching
behaviours and identify potential security risks.
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