
Hidden Web Caches Discovery

Matteo Golinelli
matteo.golinelli@unitn.it

University of Trento
Trento, Italy

Bruno Crispo
bruno.crispo@unitn.it
University of Trento

Trento, Italy

1
Published in the “Proceedings of the 27th International Symposium on Research in Attacks, Intrusions and Defenses” (RAID ‘24)
https://doi.org/10.1145/3678890.3678931

https://doi.org/10.1145/3678890.3678931

Background: Web Caches

2

● Cache public and static content

● Increase scalability, availability, and

performance

● Frequently implemented by Content Delivery

Networks (CDNs)

○ Geographically distributed, physically closer

to the end client

62%
of Top 10k is behind

a CDN1

+ many other stand-alone
caches technologies
(e.g., Squid, Varnish,

NGINX)

[1] BuiltWith. BuiltWith Technology Lookup. https://trends.builtwith.com/CDN/Content-Delivery-Network

Background: Cache Status Headers (CSH)

Used by caches to communicate whether a response is coming from the cache or

from the origin server

● Are not standardized

Examples of cache status headers of popular cache technologies2

[2] Mirheidari, S. A., Golinelli, M., Onarlioglu, K., Kirda, E., & Crispo, B. (2022). Web Cache Deception Escalates!. In 31st USENIX Security Symposium (USENIX Security 22)
3

Background: Cache Key

Cache key: unique identifier for an object in a cache

● Based on some request components (called keyed)
○ Domain name and path: example.com/path/to/index.html
○ Query string: ?id=1&order=reverse
○ Headers: Accept-Language: en-US,en

↪ Cache HIT: the request has the same cache key of a previously cached request

↪ Cache MISS: the cache key is different from all the objects already in the cache

4
[3] Amazon AWS. Understanding the cache key. https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/understanding-the-cache-key.html

Background: Cache Busting

Modify keyed elements of HTTP requests to change the cache key

● Forcefully receive a fresh copy of the response, instead of a cached one

Example: add random parameter to the query string

https://site.com/ ⇨ https://site.com/?ran=dom

5

Cache Busting Techniques

We tested different cache busting techniques on the Tranco Top 10k to identify the

most effective ones

We can cache-bust
requests on 84.3% of
sites

6

The Issue: Detect Cached Responses

Detecting cached responses is crucial to create detection methodologies for web
cache vulnerabilities (Web Cache Deception, Cache Poisoning, …)

State-of-the-art methodologies to detect cached responses are based on lookups of
cache status headers:

● Not effective when cache status headers are missing, wrong, or custom

Goal: Develop a methodology that detects caching without relying on cache status
headers

7

Methodology: Timing Measurements

We send:

● n pairs of requests where both requests have random cache busters
(Randomized group)

● n pairs of requests where only one request has a random cache buster

(Fixed group)

↪ We measure the relative time difference between receiving the two responses

Request pairs are sent in a single packet using HTTP/2 multiplexing

● Based on Van Goethem et al. "Timeless Timing Attacks"4

[4] Goethem, T. V., Pöpper, C., Joosen, W., & Vanhoef, M. (2020). Timeless Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote Connections.
In 29th USENIX Security Symposium

8

Methodology: Overview

9

Methodology: Timing Analysis

We analyze the collected timing differences using a statistical test to determine

whether their difference is statistically significant or not

● If it is: the non-cache-busted request is cached

10

Preliminary Experiment

Goal: test our methodology on sites that report caches status headers and compare

it to the SOTA methodology in the Tranco Top 10k

↪ Our methodology has an accuracy of 89.6%

11

We selected 100 sites where our methodology had a different classification

compared to the state-of-the-art methodology and manually verified them

● 82/100 were due to wrong cache status headers (our methodology was right)

↪ The accuracy of our methodology is likely far higher than 89.6%

Methodology: Accuracy

12

Large-Scale Experiment

Goal: discover hidden web caches (caches that do not use cache status headers) in

the Tranco Top 50k

% over
tested

13

Vulnerabilities Detection

We use our methodology to detect how many sites with hidden caches cache
dynamic content

● Caching dynamic content is not always an indication of a vulnerability, but in certain cases

might lead to the leakage of sensitive information

1.020/1.627 sites with hidden caches cache dynamic content

We manually investigated 35 cases:

↪ We identified 5 sites vulnerable to Web Cache Deception

14

Conclusions

We developed an accurate methodology that detects caching without relying on cache
status headers

● Useful to create detection methodologies for web cache vulnerabilities
● Open source on https://github.com/golim/hidden-web-caches-discovery

We detected hidden web caches on 5.8% of sites in the Tranco Top 50k that support
HTTP/2

● The same methodology can be implemented using HTTP/3

We used our methodology to find well-hidden vulnerabilities that would otherwise be
impossible to spot and detect

https://doi.org/10.1145/3678890.3678931 matteo.golinelli@unitn.it 15

“We acknowledge the support of the MUR PNRR project PE SERICS – SecCO (PE00000014) CUP D33C22001300002 funded by the European
Union under NextGenerationEU. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of
the European Union or European Commission. Neither the European Union nor the granting authority can be held responsible for them.”

https://github.com/golim/hidden-web-caches-discovery
https://doi.org/10.1145/3678890.3678931

