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Background: Web Caches
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● Cache public and static content

● Increase  scalability, availability, and 

performance

● Frequently implemented by Content Delivery 

Networks (CDNs)

○ Geographically distributed, physically closer 

to the end client

62%
of Top 10k is behind 

a CDN1

+ many other stand-alone 
caches technologies 
(e.g., Squid, Varnish, 

NGINX)

[1] BuiltWith. BuiltWith Technology Lookup. https://trends.builtwith.com/CDN/Content-Delivery-Network



Background: Cache Status Headers (CSH)

Used by caches to communicate whether a response is coming from the cache or 

from the origin server

● Are not standardized

Examples of cache status headers of popular cache technologies2

[2] Mirheidari, S. A., Golinelli, M., Onarlioglu, K., Kirda, E., & Crispo, B. (2022). Web Cache Deception Escalates!. In 31st USENIX Security Symposium (USENIX Security 22)
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Background: Cache Key

Cache key: unique identifier for an object in a cache

● Based on some request components (called keyed)
○ Domain name and path: example.com/path/to/index.html
○ Query string: ?id=1&order=reverse
○ Headers: Accept-Language: en-US,en

↪ Cache HIT: the request has the same cache key of a previously cached request

↪ Cache MISS: the cache key is different from all the objects already in the cache
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[3] Amazon AWS. Understanding the cache key. https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/understanding-the-cache-key.html



Background: Cache Busting

Modify keyed elements of HTTP requests to change the cache key

● Forcefully receive a fresh copy of the response, instead of a cached one

Example: add  random parameter to the query string

https://site.com/          ⇨          https://site.com/?ran=dom
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Cache Busting Techniques

We tested different cache busting techniques on the Tranco Top 10k to identify the 

most effective ones

We can cache-bust 
requests on 84.3% of 
sites
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The Issue: Detect Cached Responses

Detecting cached responses is crucial to create detection methodologies for web 
cache vulnerabilities (Web Cache Deception, Cache Poisoning, …)

State-of-the-art methodologies to detect cached responses are based on  lookups of 
cache status headers:

● Not effective when cache status headers are missing, wrong, or custom

Goal: Develop a methodology that detects caching without relying on cache status 
headers
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Methodology: Timing Measurements

We send:

● n pairs of requests where both requests have random cache busters 
(Randomized group)

● n pairs of requests where only one request has a random cache buster         

(Fixed group)

↪ We measure the relative time difference between receiving the two responses

Request pairs are sent in a single packet using HTTP/2 multiplexing

● Based on Van Goethem et al. "Timeless Timing Attacks"4

[4] Goethem, T. V., Pöpper, C., Joosen, W., & Vanhoef, M. (2020). Timeless Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote Connections. 
In 29th USENIX Security Symposium
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Methodology: Overview
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Methodology: Timing Analysis

We analyze the collected timing differences using a statistical test to determine 

whether their difference is statistically significant or not

● If it is: the non-cache-busted request is cached
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Preliminary Experiment

Goal: test our methodology on sites that report caches status headers and compare 

it to the SOTA methodology in the Tranco Top 10k

↪ Our methodology has an accuracy of 89.6%
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We selected 100 sites where our methodology had a different classification 

compared to the state-of-the-art methodology and manually verified them

● 82/100 were due to wrong cache status headers (our methodology was right)

↪ The accuracy of our methodology is likely far higher than 89.6%

Methodology: Accuracy
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Large-Scale Experiment

Goal: discover hidden web caches (caches that do not use cache status headers) in 

the Tranco Top 50k

% over
tested
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Vulnerabilities Detection

We use our methodology to detect how many sites with hidden caches cache 
dynamic content

● Caching dynamic content is not always an indication of a vulnerability, but in certain cases 

might lead to the leakage of sensitive information

1.020/1.627 sites with hidden caches cache dynamic content

We manually investigated 35 cases:

↪ We identified 5 sites vulnerable to Web Cache Deception
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Conclusions

We developed an accurate methodology that detects caching without relying on cache 
status headers

● Useful to create detection methodologies for web cache vulnerabilities
● Open source on https://github.com/golim/hidden-web-caches-discovery

We detected hidden web caches on 5.8% of sites in the Tranco Top 50k that support 
HTTP/2

● The same methodology can be implemented using HTTP/3

We used our methodology to find well-hidden vulnerabilities that would otherwise be 
impossible to spot and detect
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